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PrefacePreface

Since the publication of my book “Relativistic Quantum Mechanics and
Quantum Field Theory” in 2011, two Nobel Prizes have been awarded
for the contributions related to the subject matter of this book. One
is for the theoretical postulate predicting the Higgs Boson which is de-
tected in the Large Hadron Collider experiments at CERN in the year
2013, almost fifty years after its prediction; and the other is for the ex-
perimental discovery of the neutrino oscillations which indicate that the
neutrinos are not massless particles but should carry a small but finite
mass. The Nobel Prize in Physics for the year 2013 was awarded to Peter
Higgs and Francois Englert who proposed in the year 1964, along with
four others, the Higgs field and its field quantum - Higgs Boson, after
their experimental confirmation by CERN. The Nobel Prize for the year
2015 was awarded to Takaaki Kajita and Arthur B. McDonald, the chief
physicists of the two large experimental groups - Super-Kamiokande Col-
laboration in Japan and the Sudbury Neutrino Observatory in Canada -
which confirmed without any ambiguity the neutrino oscillation from one
flavour to another during its flight. It is interesting to note that the 2013
Nobel Prize is for the confirmation of the Standard Model of elementary
particles, which unifies the electro-weak interaction and the strong inter-
actions by the formulation of gauge theories that invoke the Higgs field
and Higgs Boson; whereas the Nobel Prize awarded in the year 2015 is for
the observation of violation in the Standard Model, which assumes zero
rest mass for the neutrinos. The discovery of neutrino oscillations clearly
indicate that one should look beyond the Standard Model and attempt
to include the gravitational interaction and formulate a unified theory
of all the four types of interactions. The String theories and Superstring
theories appear to be promising candidates for formulating a theory of ev-
erything, of which the Standard Model is the low-energy limit, applicable
at energies of the order of 100 GeV.
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viii Preface
viii Preface

“Textbook of Relativistic Quantum Physics” is the revised and en-
larged edition of the earlier book with the addition of three new chapters.
Chapters 1 to 7 deal with Relativistic Quantum Mechanics and chapters
8 to 14 are devoted to Quantum Field Theory.

Special effort is made to highlight Feynman’s intuitive approach to
Quantum Electrodynamics which has given a visual picture of the pro-
cesses that we study and a thumb rule for calculating the matrix elements.
As Schwinger once remarked, Feynman has indeed carried the Quantum
Electrodynamics to the “masses”. More than Feynman, it was Dyson who
had popularized Feynman diagrams and demonstrated that Feynman’s in-
tuitive approach is equivalent to the more general field theoretic approach
of Tomonago and Schwinger. You will find in this book the highlights of
Feynman’s contribution and how it leads to the same results that one can
arrive by the Quantum Field Theory.

Let me outline the salient features of this book. Chapter 3 is devoted
to the study of the Dirac Equation with external potentials, which enables
the analysis of the bound state of hydrogen atom, predicting correctly its
spectral lines and their hyperfine splitting. Chapter 4 is on the neutrino
and neutrino oscillations. Chapter 13 is on the Gauge Theories which
unify the three of the four known elementary particle interactions and
lead to the concept of Higgs mechanism by which a particle acquires a
mass. The chapters on Neutrino and the Gauge Theories highlight the
contributions that led to the award of the Nobel Prizes in the years 2015
and 2013.

The author has not made any serious effort to include all the refer-
ences. Some original papers have been cited in the text as footnote and
some books and review articles are included in the Bibliography at the
end.

A notable feature of this book is the inclusion of review questions,
problems and solutions to problems at the end of each chapter which will
definitely promote a clearer and deeper understanding and appreciation
of the subject. The author welcomes any suggestion for improvement and
he can be contacted by email: vdevanathan2001@yahoo.com.

One cannot expect the reader to start from the first page and go to
the last page in a sequential order. Notations and symbols are defined
usually in the text when they are first introduced. The difficulty that
a reader usually faces is in deciphering notations and symbols when he
wants to refer to any specific topic. To help such a reader, I have appended
Appendix A: List of Symbols and Notations.
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The author had the benefit of interaction with the students and fac-
ulty members of the Department of Nuclear Physics of the University of
Madras and also with the participants of the Summer Training Programs
in Physics (STPIP) conducted every year jointly under the auspices of the
Academy of Sciences, Chennai, the University of Madras, Anna Univer-
sity and the Science City of the Government of Tamil Nadu. Thanks are
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Devasenapathy for sponsoring the Summer Training Programs. I acknowl-
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Chapter 1

Introduction

Classical Mechanics envisages the dichotomy of the universe – matter and
waves, mass and energy and space and time. Quantum Mechanics unifies
matter and waves whereas Einstein’s special theory of relativity unifies
mass and energy and also space and time. Relativistic Quantum Mechan-
ics is formulated synthesizing Quantum Mechanics with the special theory
of relativity.

Newton’s laws of motion and Newtonian mechanics have laid the foun-
dations for classical mechanics but it is found that the Hamiltonian and
the Lagrangian formulation of classical mechanics and the Hamilton prin-
ciple of least action are more suitable for treating complicated problems
with constraints. The Hamiltonian theory of classical mechanics has lead
to the formulation of Quantum Mechanics by treating the canonically con-
jugate dynamical variables, position (x, y, z) and momentum (px, py, pz)
as operators, obeying certain commutation relations. Using the notation
[x, px]− = xpx − pxx, we have

[x, px]− = i~, [y, py]− = i~, [z, pz]− = i~. (1.1)

Similarly, energy E and time t are conjugate variables, obeying the com-
mutation relation

[E, t]− = i~. (1.2)

The commutation relations can be viewed as a consequence of Heisen-
berg’s uncertainty relation that leads to the discrete energy levels of a
bound system (i.e. the quantization of energy) and the quantization of
angular momentum. This is what is known as the first quantization. The
non-relativistic relation between the energy and momentum of a particle

1



2 Textbook of Relativistic Quantum Physics

leads to the Schrödinger equation whereas the relativistic relation leads
to the Klein-Gordon and Dirac equations.

1.1 The Schrödinger Equation

The non-relativistic relation for the energy E of a particle of mass m and
momentum p moving in a potential V is given by

p2

2m
+ V = E. (1.3)

Treating p and E as operators

p −→ −i~∇ and E −→ i~
∂

∂t
,

in order to satisfy the commutation relations (1.1) and (1.2), we obtain
the Schrödinger wave equation(

− ~2

2m
∇2 + V

)
Ψ(r, t) = i~

∂

∂t
Ψ(r, t), (1.4)

where Ψ(r, t) is the wave function which is interpreted as the amplitude
of probability of finding the particle at position r at time t. The complex
conjugate of Eq. (1.4) is(

− ~2

2m
∇2 + V

)
Ψ∗(r, t) = −i~ ∂

∂t
Ψ∗(r, t). (1.5)

Multiplying Eq. (1.4) by Ψ∗ on the left and Eq. (1.5) by Ψ on the right
and subtracting the latter from the former, we get

− ~2

2m

{
Ψ∗∇2Ψ− (∇2Ψ∗)Ψ

}
= i~

(
Ψ∗

∂Ψ

∂t
+
∂Ψ∗

∂t
Ψ

)
;

− ~2

2m
∇ · {Ψ∗∇Ψ− (∇Ψ∗)Ψ} = i~

∂

∂t
(Ψ∗Ψ). (1.6)

Defining the probability current density J and the probability density ρ,

J =
~

2mi
{Ψ∗∇Ψ− (∇Ψ∗)Ψ} and ρ = Ψ∗Ψ, (1.7)

we obtain the continuity equation

∂ρ

∂t
+∇ · J = 0. (1.8)



1. Introduction 3

Equation (1.8) is the continuity equation, expressing the conservation law
that the rate of change of particle density in a given region is equivalent to
the particle flux through the surface enclosing the region. Please note that
the probability density ρ is a positive definite quantity which is physically
acceptable.

It is remarkable that the Schrödinger equation can be used to solve
a wide range of problems including bound states and scattering states1.
Only we need to put the appropriate boundary conditions and the appro-
priate potentials.

1.2 The Klein-Gordon Equation

Using the relativistic energy-momentum relation for a free particle with
rest mass m,

E2 = p2c2 +m2c4, (1.9)

and using the usual recipe of treating the energy and momentum as dif-
ferential operators

p −→ −i~∇ and E −→ i~
∂

∂t
,

we obtain the relativistic wave equation

−~2∂
2Ψ

∂t2
= (−c2~2∇2 +m2c4)Ψ, (1.10)

which, on rearrangement, yields(
1

c2

∂2

∂t2
−∇2 +

m2c2

~2

)
Ψ = 0. (1.11)

Equation (1.11) is the Klein-Gordon equation, the complex conjugate of
which is given by (

1

c2

∂2

∂t2
−∇2 +

m2c2

~2

)
Ψ∗ = 0. (1.12)

Multiplying Eq. (1.11) by Ψ∗ on the left and Eq. (1.12) by Ψ on the left
and subtracting, we obtain

1

c2

(
Ψ∗

∂2Ψ

∂t2
−Ψ

∂2Ψ∗

∂t2

)
−Ψ∗∇2Ψ + Ψ∇2Ψ∗ = 0. (1.13)

1For further details, please refer to V. Devanathan, Quantum Mechanics, Narosa
Publishing House, New Delhi (2005).
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Since

∂

∂t

(
Ψ∗

∂Ψ

∂t
−Ψ

∂Ψ∗

∂t

)
= Ψ∗

∂2Ψ

∂t2
−Ψ

∂2Ψ∗

∂t2
, (1.14)

and

∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) = Ψ∗∇2Ψ−Ψ∇2Ψ∗, (1.15)

Eq. (1.13) can be written in the form of continuity equation

∂ρ

∂t
+∇ · J = 0, (1.16)

choosing for the current density J the same expression

J =
~

2mi
{Ψ∗∇Ψ− (∇Ψ∗)Ψ} (1.17)

as given in Eq. (1.7) for the non-relativistic Schrödinger equation. In the
present case, the continuity equation will be satisfied only if we choose for
the probability density ρ the expression

ρ =
i~

2mc2

(
Ψ∗

∂Ψ

∂t
−Ψ

∂Ψ∗

∂t

)
. (1.18)

The probability density ρ as given by Eq. (1.18) involves both Ψ and
∂Ψ/∂t which can be fixed arbitrarily and hence admits both positive
and negative values. Since the probability density should be a positive-
definite quantity, the Klein-Gordon equation was not accepted as a wave
equation for several years until Pauli and Weisskopf2 reinterpreted it as a
field equation in the same sense as Maxwell’s equation for electromagnetic
field. By putting the rest mass m = 0 in Eq. (1.11), we obtain the field
equation for the electromagnetic field.

The Klein-Gordon equation is a second-order differential equation in t
and this has yielded the physically unacceptable negative values also for
the probability density ρ. It may be observed that the Schrödinger equa-
tion is a first-order differential equation in t and hence yielded a positive-
definite value for the probability density. Taking this clue, Dirac at-
tempted to linearize the relativistic relation E2 = p2c2 + m2c4 which is
quadratic in both E and p and arrived at the Dirac equation.

2W. Pauli and V. Weisskopf, Helv. Phys. Acta. 7, 709 (1934).
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Thus the attempts to overcome the early difficulties encountered in the
formulation of Relativistic Quantum Mechanics paid rich dividends. Dirac
succeeded in linearizing the relativistic relation (1.9) which is quadratic
in both energy and momentum and obtained the Dirac equation for the
electron with the intrinsic properties of spin and magnetic moment. In-
terpretation of the Klein-Gordon equation as a field equation has sowed
the seed for the development of the Quantum Field theory.

1.3 The Dirac Equation

Starting with the relativistic relation E2 = p2c2+m2c4 between the energy
and momentum of a free particle of mass m, Dirac obtained a linear
relation

E = cα · p+ βmc2, (1.19)

using two operators α and β which commute with both position and
momentum vectors. Squaring (1.19), we obtain

E2 = c2(α · p)2 + β2m2c4 + (α · p)βmc3 + β(α · p)mc3, (1.20)

which will reduce to the relativistic energy-momentum relation E2 =
p2c2 +m2c4 if the operators α and β obey the following relations:

(α · p)2 = p2, β2 = 1, αβ = −βα. (1.21)

The relation
(α · p)2 = (αxpx + αypy + αzpz)

2 = p2,

implies

α2
x = α2

y = α2
z = 1;

αxαy = −αyαx; αyαz = −αzαy; αzαx = −αxαz.
(1.22)

Using the usual recipe for the first quantization of replacing the energy
and momentum by differential operators

E −→ i~
∂

∂t
and p −→ −i~∇

in Eq. (1.19), the time-dependent Dirac equation for a free particle is
obtained.

i~
∂Ψ(r, t)

∂t
=
(
−ic~α ·∇+ βmc2

)
Ψ(r, t). (1.23)
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The space-time dependence of the free particle Dirac wave function can
be explicitly written as

Ψ(r, t) = ψ e(i/~)(p·r−Et). (1.24)

This satisfies the time-dependent Dirac equation (1.23) for a free particle;
from which we obtain the time-independent Dirac equation

(cα · p+ βmc2)ψ = Eψ, (1.25)

with a multi-component wave function ψ. If αx, αy, αz and β are matrices
of dimension N ×N , then the Dirac wave function ψ should be a column
vector with N components. In Eq. (1.25), p is the momentum vector and
not an operator.

Dirac’s α and β matrices

The Dirac Hamiltonian should be Hermitian, i.e., H = H†. Since p is
Hermitian,

H = c(α · p+ βmc); H† = c(α† · p+ β†mc).

This means that αi, (i = x, y, z) and β matrices are Hermitian.

α†i = αi, (i = x, y, z); β† = β.

Since
α2
i = 1, (i = x, y, z) and β2 = 1,

it follows that
αi = α−1

i and β = β−1,

which means that the matrices αi and β are non-singular and consequently
their determinant is non-zero.

det(αi) 6= 0, (i = x, y, z); detβ 6= 0.

We have already seen that the Dirac matrices αx, αy, αz, β anticommute.
If they are of dimension N ×N , then

αiβ = −βαi,
det(αiβ) = det(−1) det(βαi),

det(αi) det(β) = det(−1) det(β) det(αi), (1.26)
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from which, we deduce that

det(−1) = (−1)N = 1, (1.27)

assuming that the matrices αi, β are of dimensions N ×N and the condi-
tion (1.27) is satisfied if N is even.

N = 2, 4, 6, · · · .

We have seen that the (2× 2) matrices permit only three anticommuting
matrices (the Pauli matrices) along with the unit matrix as independent
matrices and all other matrices can be represented as a linear combination
of them. Since in Dirac equation, we have four anticommuting matrices,
they should be of higher dimension, at least (4× 4).

Dirac’s α and β matrices are traceless. Since αiβ = −βαi, it follows
that

αiβα
−1
i = −β

Trace (αiβα
−1
i ) = −Trace β

Trace (α−1
i αiβ) = −Trace β

Trace (β) = −Trace β (1.28)

This means that Trace β = 0. In the above derivation, we have used the
cyclic property of the Trace.

Trace (ABC) = Trace (CAB).

Similarly, it can be shown that Trace αi = 0, (i = x, y, z). Let us now
give an explicit representation3 for the Dirac matrices which satisfy all
the above properties.

αi =

[
0 σi
σi 0

]
, β =

[
I 0
0 −I

]
, (1.29)

where σi denotes the familiar Pauli matrices and I denotes the 2× 2 unit
matrix. Although the Dirac matrices are of dimension 4 × 4, we have

3It is the most commonly used representation but it is not the unique representation.
Other representations are possible.
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written conveniently in the 2× 2 form in Eq. (1.29). Explicitly,

αx =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , αy =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ,

αz =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
(1.30)

The continuity equation

Multiplying the Dirac equation (1.23) on the left by Ψ†, we get

i~Ψ†
∂Ψ

∂t
= −ic~Ψ†α ·∇Ψ + βmc2Ψ†Ψ. (1.31)

Taking the Hermitian conjugate of the Dirac equation (1.23) and multi-
plying on the right by Ψ, we get

−i~∂Ψ†

∂t
Ψ = ic~(∇Ψ†) ·α†Ψ + β†mc2Ψ†Ψ. (1.32)

Remembering that α and β are Hermitian matrices and subtracting (1.32)
from (1.31), we obtain

i~
∂

∂t
(Ψ†Ψ) = −ic~

(
Ψ†α ·∇Ψ + (∇Ψ†) ·αΨ

)
= −ic~∇ · (Ψ†αΨ), (1.33)

which can be written as a continuity equation

∂ρ

∂t
+∇ · J = 0, (1.34)

with4

ρ = Ψ†Ψ = ψ†ψ, J = cΨ†αΨ = c ψ†αψ. (1.35)

4The space-time dependence of the Dirac wave function Ψ is given by Eq. (1.24)
and it does not affect ρ and J as shown in Eq. (1.35).
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Since ψ is a column vector and ψ†, a row vector as given below

ψ =


a
b
c
d

 , ψ† =
[
a∗ b∗ c∗ d∗

]
, (1.36)

the probability density

ρ = Ψ†Ψ = ψ†ψ = a∗a+ b∗b+ c∗c+ d∗d

is a positive-definite quantity, overcoming the difficulty encountered in
the Klein-Gordon equation. The probability current density J together
with the probability density ρ obeys the continuity equation (1.34). So,
the Dirac equation has become a physically acceptable relativistic wave
equation.

Free particle solutions and their interpretations

The multicomponent wave functions of the Dirac equation are known as
Dirac spinors and they correspond to the description of spin 1

2~ particle.
The Dirac Hamiltonian H = c(α · p + βmc) does not commute with
the orbital angular momentum operator L and so the orbital angular
momentum L is not a constant of motion but L+ 1

2~σ commutes with H
(vide Problem (1.1)). Hence the total angular momentum J = L + 1

2~σ
is a constant of motion, indicating that the Dirac particle has an intrinsic
spin 1

2~. This is the greatest triumph of Dirac equation that it describes
a particle such as electron with intrinsic spin 1

2~ and it is a consequence
of the linearization of the relativistic relation E2 = p2c2 +m2c4.

Although the linearization has eliminated the negative values for the
probability density and thus yielded physically acceptable solutions of the
Dirac equation, yet the Dirac equation permitted both positive and neg-
ative energy solutions. The negative energy solutions cannot be thrown
away as unphysical since both the positive and negative energy solutions
together formed a complete set.

i=4∑
i=1

ψiψ
†
i = I. (1.37)

The Dirac equation has four solutions, of which two of them correspond
to positive energies, one with spin up and another with spin down and the
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other two correspond to negative energies, one with spin up and another
with spin down.

The negative energy solutions do pose a serious problem. If the neg-
ative energy states exist, then the electron in a positive energy state will
make a transition to the negative energy states and it is impossible to con-
struct any stable atom with electrons. To avoid this disastrous situation,
Dirac made a bold suggestion that the negative energy states, though
exist, are all filled by electrons and the Dirac vacuum5 is one in which
all the negative energy states are filled and all the positive energy states
are empty. Then the Pauli exclusion principle will prevent the transition
of an electron from a positive energy state to the negative energy states
which are all occupied and thereby renders stability to the electron in an
atom.

The hole theory of Dirac

What are the consequences of this bold assumption of negative energy
sea of filled electrons. A negative energy electron can absorb radiation
and jump into a positive energy state; thereby creating a hole in the
negative energy sea and a particle in the positive energy state. A hole
in the negative energy sea is the absence of a negative energy electron
from the Dirac vacuum and hence will be interpreted by the observer as
the particle with opposite charge in the positive energy state. Thus the
Dirac equation together with the hole theory predicts the existence of
positrons which have been subsequently discovered by Anderson6. Thus
the prediction and the subsequent discovery of positrons support the hole
theory of Dirac and introduced the concept of anti-particles, which can
be considered as the greatest contribution of Dirac’s theory of electron.

A gamma ray of energy greater than 2mc2 can excite a negative energy
electron to a positive energy state; thereby creating a hole and a particle
as illustrated in Fig. 1.1. This process is known as pair creation (creation
of positron and electron). The inverse process of pair annihilation (anni-
hilation of positron and electron) accompanied by emission of gamma ray
of energy greater than 2mc2 is also illustrated in Fig. 1.1.

Although Dirac attempted only to develop a single particle relativis-
tic wave equation, he has ended up with the theory of many particles,

5Normally, we think of the vacuum as a state of emptiness but the Dirac vacuum
has an infinite number of particles occupying the negative energy states!

6C. D. Anderson, Phys. Rev., 41, 405 (1932). C. D. Anderson was awarded the
Nobel prize for physics in 1936 for the discovery of positron.
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Figure 1.1: Electron-positron pair creation and pair annihilation according to
Dirac’s hole theory

predicting pair creation and pair annihilation. Indeed the Dirac equation
together with the hole theory can be truly regarded as the forerunner of
quantum field theory.

Bound state problems

The Dirac equation has emerged as a relativistic wave equation for a
spin- 1

2 particle. Let us use it to find the energy levels of hydrogen atom
and also study the properties of neutrino which is a spin- 1

2 particle with
rest mass m = 0.

The hydrogen atom is a bound state problem wherein the electron
which is a spin- 1

2 particle moves in a central potential. This reduces to
the problem of solving the Dirac equation with the Coulomb potential
with appropriate boundary conditions. This can be done more easily by
using spherical polar coordinates. The solutions yield correctly the energy
levels of hydrogen atom with fine structure splitting. This is discussed in
Chapter 3.

The Neutrino

The neutrino is a chargeless massless particle with spin- 1
2 which was first

conjectured in the year 1930 by Wolfgang Pauli in order to preserve the
conservation laws of energy, momentum and angular momentum in β-
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decay. Since it is a spin- 1
2 particle, the Dirac equation should equally be

applicable to the study of neutrino but in this case the rest mass m = 0.
Since neutrinos are chargeless and massless and are produced only in weak
interactions and undergo only weak interactions, they are very elusive
and cannot be detected directly. They can be detected only indirectly by
observing the other particles with which they interact. Neutrinos travel
large distances without any interaction and so it took more than 25 years
for the experimental confirmation of this particle by Reines and Cowen.
They were rewarded with the Nobel Prize in Physics for the year 1956 for
this Herculean task.

What is produced in β-decay is the electron neutrino. Subsequently,
it is discovered that there are three flavours of leptons - electron, muon
and tau particles with their associated neutrinos. Recently, it is found
that the neutrinos, during their long journey without interaction, oscillate
from one flavour to another. This is known as neutrino oscillations which
has been confirmed by the two large experimental groups - the Super
Kamiokande Collaboration in Japan and Sudbury Neutrino Observatory
in Canada. The chief physicists of these two groups, Takaaki Kajita and
Arther McDonald were rewarded with the Nobel Prize in 2015.

The discovery of neutrino oscillations imply that the neutrinos are
not massless particles. They should carry a small mass. There is a new
surge of interest in neutrino physics to find experimentally the small mass
of the neutrinos and also explore the theoretical consequences. In India,
too, efforts are being made to set up an India-based Neutrino Observatory
(INO) in Theni District in South India.

1.4 Feynman’s Positron Theory

We have observed earlier that Dirac equation admits both positive and
negative energy solutions and a hole in the negative energy sea is inter-
preted as positron with positive energy. Feynman developed an unified
approach for the treatment of electrons and positrons. One can draw
a world line for electron which is propagated from an initial space-time
point x1, t1 to a final space-time point x2, t2 as shown in Fig. 1.2. It is
a pictorial representation, known as the Feynman diagram. At any given
time, the number of particles need not be conserved but the charge will
have to be conserved. Taking this clue, Feynman intuitively identified the
positron as the electron travelling backwards in time. Initially, at time t1,
there is only one electron and finally at time t2, there is once again only
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one electron but at some intermediate time, ti there are two electrons and
one positron. An electron-positron pair has been created at space-time
point xA, tA, the positron being annihilated by the incoming electron at
space-time point xB, tB and the electron emerging into the final state.
Feynman describes this scenario beautifully in an inimitable way7. “It is
as though a bombardier flying low over a road suddenly sees three roads
and it is only when two of them come together and disappear again that
he realizes that he has simply passed over a long switchback in a single
road.”

· · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x1, t1

x2, t2

A(xA, tA)

B(xB , tB)

t1

tA

ti

tB

t2

time

Figure 1.2: Feynman diagram representing a world line for an electron. Between
the points, B and A, the electron goes back in time. It is the hole in the negative
energy sea which is identified as positron that travels from A to B. At time t1,
there is only one electron and at time t2, there is once again only one electron but
at some intermediate time ti, there are two electrons and one positron. Please
note that the particle number is not conserved but the charge is conserved.

Instead of using the differential equation for the time evolution of
the wave function in infinitesimal steps, Feynman developed the concept
of propagation kernel which makes a giant leap forward and gives the
time evolution of the wave function from one space-time point to another
space-time point that is well separated. Feynman’s method has greatly
simplified the calculation of processes in Quantum Electrodynamics with-
out the need of using the field-theoretical methods. In this book, we shall
follow Feynman’s method of solving problems in Quantum Electrodynam-
ics and indicate how the Quantum Field Theory and interaction between
fields lead to the same results through the S-matrix formalism.

7R. P. Feynman, Phys. Rev., 76, 749 (1949).
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1.5 Quantum Electrodynamics

In Quantum Electrodynamics (QED), we consider processes involving
electrons and positrons, interacting with electromagnetic fields. Ruther-
ford scattering, Compton scattering, electron-electron scattering, electron-
positron scattering, electron-positron pair creation, electron-positron pair
annihilation are some of the processes considered in this book.

In QED, the interaction between the particles and the electromagnetic
fields is regarded as a perturbation. When calculations were done in the
lowest order, reasonable results were obtained. Encouraged by the initial
success, attempts were made to improve the accuracy by going to higher
orders but lo and behold, such attempts encountered infinities! How the
infinities are tamed and handled by renormalization procedures forms an
interesting anecdote and an important development.

QED was the culmination of the efforts of three theoretical physicists,
Sin-Itiro Tomonaga, Julian Schwinger and Richard Feynman who shared
the Nobel prize for Physics in the year 1965. Their formulations were
so divergent that it was Freeman Dyson8 who showed their equivalence.
The theory of Feynman differs profoundly in its formulation from that of
Tomonaga and Schwinger. The advantages of the Feynman theory are
simplicity and ease of applications, while those of Tomonaga-Schwinger
are generality and theoretical completeness.

Feynman refers to QED as the jewel of physics - our proudest pos-
session, because QED is able to predict the experimental results with
incredible accuracy. They are

1. The Lamb shift in hydrogen spectrum of 2S1/2 level from 2P1/2,

2. The anomalous magnetic moment of the electron,

3. Splitting of the ground state of positronium.

What I have referred to above is a success story – success in pre-
dicting all the observable quantities with great accuracy by using clever
techniques to avoid the infinities. Feynman comments that the renormal-
ization theory is simply a way to sweep difficulties under the rug. All
the players, Tomonaga, Schwinger and Feynman feel that the theory that
they have developed is intellectually not satisfactory. What they have
provided is only a conservative solution but what is needed is a radical
innovation and a revolutionary departure similar to what has been made
in the nineteen thirties by Bohr, Heisenberg, Schrödinger and Dirac.

8F. J. Dyson, Phys. Rev., 75, 486 (1949).
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1.6 Quantum Field Theory

Instead of considering the Schrödinger equation, the Klein-Gordon equa-
tion and the Dirac equation as single-particle wave equations, they can be
treated as classical field equations in the same way as Maxwell’s equations
for electromagnetic field. These field equations can be deduced using ap-
propriate Lagrangian densities (L ) and the Euler-Lagrange equations of
motion deduced from the action integral. Since the action integral is rel-
ativistically invariant, it is possible to develop a relativistically invariant
theory which is manifestly covariant at every stage.

Defining the conjugate momentum field Π(x, t)

Π(x, t) =
∂L

∂ ∂Ψ
∂t

, (1.38)

for each field Ψ(x, t), we can postulate either commutation relations or
anticommutation relations for the field operator Ψ(x, t) and its conjugate
momentum Π(x, t). The following commutation relations

[Ψ(x, t),Π(x′, t)]− = i~δ(x,x′),
[Ψ(x, t),Ψ(x′, t)]− = 0,
[Π(x, t),Π(x′, t)]− = 0,

(1.39)

are analogous to the Heisenberg commutation relations used in Quantum
Mechanics for x and p and bear a similarity to Poisson brackets in classical
mechanics. The commutation relations (1.39) are applicable to the Boson
fields whereas the anticommutation relations as shown below have to be
used for Fermion fields.

{Ψ(x, t),Π(x′, t)}+ = i~δ(x,x′);
{Ψ(x, t),Ψ(x′, t)}+ = 0;
{Π(x, t),Π(x′, t)}+ = 0.

(1.40)

The anticommutation relations have no classical analogue.

The commutation relations (1.39) or anticommutation relations (1.40)
are used to quantize the fields and since the quantization is done for the
second time, this quantization is known as the second quantization. It may
be recalled that the Schrödinger equation, the Klein-Gordon equation and
the Dirac equation are themselves obtained earlier from the correspond-
ing Hamiltonians by treating x and p as operators obeying commutation
relations. This is what we have referred to as the first quantization.
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The field Ψ(x, t) and the conjugate momentum field Π(x, t) can be
expanded in terms of the annihilation and creation operators (known
as Fourier decomposition) and the application of commutation relations
(1.39) or anticommutation relations (1.40) yields respectively the com-
mutation relations or anticommutation relations between the annihilation
and creation operators.

It is found that the Schrödinger equation, being a non-relativistic one,
can be quantized by using either commutation or anticommutation rela-
tions. If commutation relations are used, then it becomes applicable to
Bosons and if anticommutation relations are used then it becomes applica-
ble to Fermions. But in the case of relativistic field equations, only one of
the relations can be used to obtain meaningful results. The Klein-Gordon
equation can be quantized only by using the commutation relations be-
tween the field function and its corresponding conjugate momentum and
is applicable only for Bosons. On the other hand, the Dirac equation can
be quantized only by using the anticommutation relations and becomes
applicable only to Fermions.

The fields interact with one another and all the phenomena that we
observe are due to the interaction of fields. How the interaction of the
fields can best be studied through the S-matrix formalism is outlined in
Chapter 10.

The S-matrix is a perturbation series. As long as we confine ourselves
to the lowest order, we get meaningful results. But, if we try to go to
higher orders to improve the accuracy, we face divergent integrals. By
using special techniques, known as regularization and renormalization,
we can extract finite corrections. But Feynman refers to this as the shell
game with the following remarks in his inimitable way.

“The shell game that we play is technically called renormalization. But
no matter how clever the word, it is what I would call a dippy process!
Having to resort to such hocus-pocus has prevented us from proving that
the theory of quantum electrodynamics is mathematically self-consistent.
I suspect that renormalization is not mathematically legitimate. . . . I
believe there is really no satisfactory quantum electrodynamics, but I am
not sure. . . . I think that the renormalization theory is simply a way to
sweep difficulties of divergences of electrodynamics under the rug. I am,
of course not sure of that!”

This scepticism was shared by many at that time. By now, it has be-
come clearer that the renormalization techniques are legitimate methods
of arriving at finite results for observable quantities and QED is indeed a
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renormalizable field theory. The field theory has been extended to include
in its fold weak interactions and strong interactions. This has become
possible by the formulation of Gauge theories.

The Gauge Theories

The Lagrangian densities which serve as the source for all field equations
are invariant under certain phase transformations. The invariance un-
der phase transformation leads to certain conservation laws. The phase
transformation is often known as the gauge transformation. If the phase
transformation is independent of space-time coordinates, it is known as
the global gauge transformation. If it depends on the space-time coordi-
nates, then it is known as the local gauge transformation.

Just as the invariance of the Lagrangian under global gauge transfor-
mation leads to conserved currents (which is translated into conservation
laws), the invariance under local gauge transformation dictates the inter-
action dynamics. Consider, for example, the Lagrangian for a free elec-
tron. The requirement that the Lagrangian should be locally invariant
under the same type of transformation can only be fulfilled by introduc-
ing additional field, which, in this case turn out to be electromagnetic
field. Thus the electromagnetic field is a consequence of the requirement
of local symmetry of the Lagrangian for the electron.

This procedure can be generalized to more complex transformations.
One starts with a Lagrangian for a matter field and derives the inter-
action by introducing exactly those fields that make the Lagrangian in-
variant under a relevant local gauge transformation. Thus, it appears
that all fundamental forces can be derived by imposing the condition of
local gauge symmetry of matter fields. It is also found that invariance
of Lagrangian under gauge transformation is a necessary condition for
developing a renormalizable theory.

The gauge transformations can be classified as U(1), SU(2) and SU(3)
in the group theory parlance. U(1) is said to be abelian (commutative)
gauge transformation and SU(2) and SU(3) are said to be non-abelian
(non-commutative) gauge transformation. The invariance under local
U(1) gauge transformation leads to the electromagnetic interaction; the
invariance under local SU(2)×U(1) gauge transformation leads to the uni-
fied electro-weak interaction and the invariance under local SU(3) gauge
transformation leads to strong interactions (Quantum Chromodynamics).
So, the gauge theories successfully explain and unify three out of the four
known interactions.
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The Standard Model and beyond

Thus a Standard Model for elementary particle physics has emerged as
an acceptable theory for the three of the four known elementary particle
interactions. It has been the aim of theoretical physicists to formulate
a unified theory which includes also gravitational interaction. It is now
being felt that the Quantum Field Theory is a low-energy theory whose
validity is limited to 1000 GeV, beyond which one has to look for String
Theory with supersymmetry, known as Superstring Theories. This emerg-
ing scenario is discussed in the last chapter of this book.

Review Questions

1.1 What is meant by the first quantization and the second quantization?
Distinguish between them and illustrate your answer by giving examples.

1.2 Obtain the Klein-Gordon equation and deduce the continuity equation
that it obeys. Show that the Klein-Gordon equation permits the negative
values for the probability density.

1.3 Obtain the Dirac equation and show that its solution is a multi-component
wave function. Also show that the Dirac equation yields the continuity
equation with positive-definite values for the probability density.

Problems

1.1 Show that the orbital angular momentum operator L does not commute
with the Dirac Hamiltonian and only L + 1

2~σ commutes with the Dirac
Hamiltonian; thereby indicating that the Dirac equation is for a particle
with intrinsic spin 1

2~σ.

1.2 Show that the electron possesses an intrinsic magnetic moment M due to
its spin and that the Dirac equation yields the correct gyromagnetic factor
(g factor) g = 2.

1.3 Show that σ does not commute with the Dirac Hamiltonian but σ ·p com-
mutes with the Dirac Hamiltonian. Hence demonstrate that the helicity
σ·p
|p| is a good quantum number for a Dirac particle.

Solutions to Problems

1.1 It is shown that the orbital angular momentum (L) is not a constant of
motion since the operator L does not commute with the Dirac Hamiltonian
H. However, the total angular momentum J which includes the spin
S = 1

2~σ is a constant of motion since J (= L+ S) commutes with H.
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The Dirac Hamiltonian and the orbital angular momentum operator are
given by

H = cα · p+ βmc2, L = r × p, (1.41)

where p is to be regarded as an operator −i~∇. Since the operator L
commutes with the term βmc2 of the Dirac Hamiltonian,

[H,L]− = [cα · p,L]−

= c[α · p, Lx]− êx + c[α · p, Ly]− êy + c[α · p, Lz]− êz, (1.42)

where êx, êy, êz denote the unit vectors. Let us evaluate the first term9

on the right hand side of the above equation.

c[α · p, Lx]− = c[αxpx + αypy + αzpz, ypz − zpy]−

= c[αypy, ypz]− − c[αzpz, zpy]−

= cαy[py, y]−pz − cαz[pz, z]−py

= −i~c(αypz − αzpy) = −i~c(α× p)x. (1.43)

Similarly, the second and third terms can be evaluated and the final result
is

[H,L]− = −i~c(α× p) 6= 0. (1.44)

Let us now evaluate the commutator bracket

[H,S]− = [H, 1
2~σ]−

= [cα · p+ βmc2, 1
2~σ]− = 1

2~c[α · p,σ]−. (1.45)

Using matrix algebra, we find

(α · p)σ =

[
0 σ · p

σ · p 0

] [
σ 0
0 σ

]
=

[
0 (σ · p)σ

(σ · p)σ 0

]
(1.46)

and

σ(α · p) =

[
σ 0
0 σ

] [
0 σ · p

σ · p 0

]
=

[
0 σ(σ · p)

σ(σ · p) 0

]
. (1.47)

It can easily seen that

(σ · p)σ = p+ iσ × p (1.48)

σ(σ · p) = p− iσ × p (1.49)

9The matrices αx, αy and αz are independent of the position coordinates and mo-
menta and hence commute with them.
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and consequently

(σ · p)σ − σ(σ · p) = 2iσ × p. (1.50)

Substituting the above results, the commutator bracket

[H,S]− = 1
2~c[α · p,σ]−

= 1
2~c

[
0 2iσ × p

2iσ × p 0

]
= i~c(α× p). (1.51)

Thus, we find from Eqs. (1.44) and (1.51) that

[H,J ]− = [H,L+ S]− = 0. (1.52)

This means that the total angular momentum is a constant of motion for
the Dirac particle and that the total angular momentum includes the spin
of the Dirac particle which is 1

2~. Thus the Dirac equation is for a particle
of spin 1

2~ and it is a consequence of the linearization of the relativis-
tic energy-momentum relation and writing it as a first order differential
equation.

1.2 The Dirac equation for a point particle of charge e in an electromagnetic
field, described by the vector and scalar potentials A and φ, is written
using the usual recipe p→ p− eA/c, E → E − eφ.{

cα ·
(
p− eA

c

)
+ βmc2

}
ψ = (E − eφ)ψ. (1.53)

Writing ψ in the two-component form

[
ϕa
ϕb

]
and the matrices α and β

as 2× 2 matrix, we obtain coupled equations in ϕa and ϕb.{
c

[
0 σ · P

σ · P 0

]
+

[
I 0
0 −I

]
mc2

}[
ϕa
ϕb

]
= (E − eφ)

[
ϕa
ϕb

]
, (1.54)

using the notation P = p− eA/c. The two coupled equations are

c(σ · P )ϕb +mc2ϕa = (E − eφ)ϕa, (1.55)

c(σ · P )ϕa −mc2ϕb = (E − eφ)ϕb. (1.56)

We are interested in the positive energy states with ϕa as large component
and ϕb as small component. If ε is the kinetic energy of the electron, then

E = mc2 + ε,
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where m is the rest mass of the electron. For small ε, we can go to the
non-relativistic limit and investigate the Dirac equation in the presence of
electromagnetic field. From Eq. (1.56), we get

ϕb =
cσ · P

E +mc2 − eφ
ϕa ≈

cσ · P
2mc2

ϕa, if ε, eφ� 2mc2. (1.57)

Substituting this expression for ϕb in Eq. (1.55), we get

c2 (σ · P )2

2mc2
ϕa = (E −mc2 − eφ)ϕa = (ε− eφ)ϕa. (1.58)

The above equation is the non-relativistic limit of Dirac equation and it is
an equation in ϕa. We note that10

(σ · P )2 = P · P + iσ · (P × P ), (1.59)

P × P =

(
p− eA

c

)
×
(
p− eA

c

)
= −e

c
(A× p+ p×A) = i~

e

c
∇×A. (1.60)

Substituting (1.59) and (1.60) in Eq. (1.58) and observing that the strength
of the magnetic field B =∇×A, we get{

1

2m

(
p− eA

c

)2

− e~
2mc

σ ·B + eφ

}
ϕa = εϕa. (1.61)

One can recognize the second term on the left hand side of the above
equation as arising from the magnetic dipole moment

M =
e~

2mc
σ = µBσ, (1.62)

where µB = e~/2mc is known as the Bohr magneton. Since, for the
electron, e is negative, the magnetic moment is antiparallel to the spin.
Moreover, since the electron spin is S = 1

2~σ, the magnetic moment is

M =
e

mc
S. (1.63)

Thus, we obtain the remarkable result that the gyromagnetic ratio of the
electron is e/mc or g(e/2mc) with g = 2. The correct g factor follows di-
rectly from the Dirac equation and is not put in by hand from experimental
evidence.

10In deducing Eq. (1.60), problem (11.6) of my book on Quantum Mechanics will be
helpful.
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1.3 Let us first evaluate the commutator [σ, H]−.

[σ, H]− = [σ, c(α · p+ βmc)]−

= c[σ,α · p]−, since σ commutes with βmc

= −2ic(α× p),

using the results (1.46) – (1.50).
In the same way, the commutator [σ · p, H]− can be evaluated.

[σ · p, H]− = [σ · p, c(α · p+ βmc)]−
= c[σ · p,α · p]−

= c

{[
σ · p 0

0 σ · p

] [
0 σ · p

σ · p 0

]
−
[

0 σ · p
σ · p 0

] [
σ · p 0

0 σ · p

]}
= c

{[
0 (σ · p)2

(σ · p)2 0

]
−
[

0 (σ · p)2

(σ · p)2 0

]}
= 0.

Since σ · p commutes with the Dirac Hamiltonian H, one can find simul-
taneously the eigenvalues of both. Since(

σ · p
|p|

)2

= 1,

the eigenvalue of the operator
σ·p
|p| , known as the Helicity operator is

σ · p
|p|

= ±1.



Chapter 2

The Dirac Equation and its
Solutions

There are two ways of writing the Dirac equation. One is the conventional
way of writing as given by Eq. (2.2), using the Dirac matrices α and β
and the other is the Feynman way of writing as given by Eq. (2.37), using
the γ matrices. They differ by a multiplicative factor β(≡ γ0). Their
positive energy solutions coincide but their negative energy solutions dif-
fer by a change in sign of the momentum vector p. In other words, the
negative energy solutions of the conventional Dirac equation correspond
to electron of momentum p and energy −E whereas the negative energy
solutions of Dirac equation in Feynman notation correspond to electron
of momentum −p and energy −E. The reversal in the sign of momen-
tum for the negative energy electron has been interpreted by Feynman as
the reversal of time. Feynman made a bold suggestion that the negative
energy electron travels backward in time which is equivalent to the posi-
tive energy positron travelling forward in time. This new viewpoint has
considerably simplified the calculation of electrodynamic processes which
can be elegantly represented by means of Feynman diagrams.

2.1 The free particle solutions

Starting with the Dirac Hamiltonian of a free particle with momentum p
and rest mass m

H = cα · p+ βmc2, (2.1)

23
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which is linear in energy and momentum, we can write down the time-
independent Dirac equation as

(cα · p+ βmc2)ψ = Eψ. (2.2)

Although α and β are 4 × 4 matrices as given in (1.30), it is convenient
to write them in the compressed form as 2 × 2 matrices as shown in Eq.
(1.29) for easy algebraic manipulation.

Writing the Dirac equation (2.2) in a more simplified form Aψ = 0,
a non-trivial solution for ψ can be obtained by imposing the condition,
det A = 0.

det A = det (cα · p+ βmc2 − EI)

=

∣∣∣∣ mc2 − E cσ · p
cσ · p −(mc2 + E)

∣∣∣∣ = 0, (2.3)

where I is the unit matrix and σ (σx, σy, σz) are Pauli matrices. This leads
to the relativistic relation E2 = p2c2+m2c4 and guarantees that the Dirac
equation satisfies the relativistic relation. So, the Dirac equation is only a
linearized form of the relativistic energy–momentum relation in operator
formalism. It follows that the Dirac Hamiltonian has two eigenvalues, one
positive and the other negative.

E = ±
√
p2c2 +m2c4 = ±cW, (2.4)

with

W =
√
p2 +m2c2 =

√
p2 + µ2, using the symbol µ = mc. (2.5)

In this choice, W is always a positive quantity.
Writing the Dirac equation

(cα · p+ βmc2)ψ = Eψ,

as a 2× 2 matrix equation[
mc2 cσ · p
cσ · p −mc2

] [
ϕa
ϕb

]
= E

[
ϕa
ϕb

]
, (2.6)

where we have denoted the Dirac wave function in a two component form[
ϕa
ϕb

]
, we obtain a coupled equation in ϕa and ϕb.

mc2 ϕa + cσ · p ϕb = E ϕa. (2.7)

cσ · p ϕa −mc2 ϕb = E ϕb. (2.8)
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The energy E can assume both positive and negative values. The coupled
equations (2.7) and (2.8) give only the ratios ϕa/ϕb. From Eq. (2.7), we
obtain

ϕa
ϕb

=
cσ · p
E −mc2

=
σ · p
±W − µ

, (2.9)

which becomes indeterminate as p → 0 for positive energy state since
both the components ϕa and ϕb become zero. So, Eq. (2.9) is relevant
only for negative energy states. In a similar way, it can be deduced from
Eq. (2.8) that

ϕb
ϕa

=
cσ · p
E +mc2

=
σ · p
±W + µ

(2.10)

becomes indeterminate for negative energy states as p→ 0 and so appli-
cable only for positive energy states.

So, we shall choose solution (2.10) for positive energy states and solu-
tion (2.9) for negative energy states. Since they give only the ratios, one
is free to choose either ϕa or ϕb. The obvious choice is to choose one of
them as Pauli spinor,

χ+ =

[
1
0

]
or χ− =

[
0
1

]
.

For positive energy solutions, let us choose ϕa = χ+ or χ− and for
negative energy solutions, we shall choose ϕb = χ+ or χ−. Thus, we
obtain the following four solutions:

ψ1 =

[
χ+

σ·p
W+µχ+

]
=


1
0
pz

W+µ
p+
W+µ

 ; ψ2 =

[
χ−

σ·p
W+µχ−

]
=


0
1
p−
W+µ
−pz
W+µ

 ; (2.11)

ψ3 =

[
−σ·p
W+µ χ+

χ+

]
=


−pz
W+µ
−p+
W+µ

1
0

 ; ψ4 =

[
−σ·p
W+µ χ−
χ−

]
=


−p−
W+µ
pz

W+µ

0
1

 ;(2.12)

with

p+ = px + ipy and p− = px − ipy.
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In obtaining the above solutions, we have made use of the following rela-
tions:

σ · p = σxpx + σypy + σzpz

=

[
pz px − ipy

px + ipy −pz

]
=

[
pz p−
p+ −pz

]
. (2.13)

σ · p
W + µ

χ+ =
1

W + µ

[
pz p−
p+ −pz

] [
1
0

]
=

[
pz

W+µ
p+
W+µ

]
. (2.14)

σ · p
W + µ

χ− =
1

W + µ

[
pz p−
p+ −pz

] [
0
1

]
=

[
p−
W+µ
−pz
W+µ

]
. (2.15)

The four solutions ψ1, ψ2, ψ3 and ψ4 of the Dirac equation are called
Dirac’s four-spinors since the Dirac equation corresponds to spin-1/2 par-
ticle. The solutions ψ1 and ψ2 correspond to positive energy states and ψ3

and ψ4 correspond to negative energy states; of which ψ1 and ψ3 denote
the spin-up state and ψ2 and ψ4 denote the spin-down state.

2.2 Orthogonal and closure properties

It can be easily seen that the four solutions are mutually orthogonal. They
can also be normalized such that

〈ψi|ψj〉 = ψ†iψj = δij , i, j = 1, 2, 3, 4.

The normalized solutions of the free particle Dirac equation are

ψ1 = N


1
0
pz

W+µ
p+
W+µ

 ; ψ2 = N


0
1
p−
W+µ
−pz
W+µ

 ; (2.16)

ψ3 = N


−pz
W+µ
−p+
W+µ

1
0

 ; ψ4 = N


−p−
W+µ
pz

W+µ

0
1

 ; (2.17)

with the normalization factor

N =

√
W + µ

2W
.
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Let us now arrange all the four solutions of the Dirac equation for the
free particle side by side to form a matrix D(p).

D(p) =

(
W + µ

2W

)1/2


1 0 −pz

W+µ
−p−
W+µ

0 1 −p+
W+µ

pz
W+µ

pz
W+µ

p−
W+µ 1 0

p+
W+µ

−pz
W+µ 0 1

 . (2.18)

If ψ1(0), ψ2(0), ψ3(0) and ψ4(0) are the fundamental four-spinors in the
limiting case p→ 0,

ψ1(0) =


1
0
0
0

 , ψ2(0) =


0
1
0
0

 , ψ3(0) =


0
0
1
0

 , ψ4(0) =


0
0
0
1

 ,(2.19)

then it follows that

ψi(p) = D(p)ψi(0). (2.20)

It can be easily verified that the matrix D(p) can be written in a compact
form as

D(p) =

(
W + µ

2W

)1/2(
1− β(α · p)

W + µ

)
. (2.21)

It is to be observed that p in D(p) is not an operator. Equation (2.20)
enables you to go from the free particle solutions given in the rest frame
to any other frame of reference in which the particle has momentum p.
So, D(p) is known as the Lorentz boost which tells you how the Dirac
wave function transforms under Lorentz transformation.

All the four solutions ψ1, ψ2, ψ3 and ψ4 together form a complete set
since

4∑
i=1

|ψi〉〈ψi| =
4∑
i=1

ψiψ
†
i = I. (2.22)

This is known as the closure property. That is why the negative energy
solutions ψ3 and ψ4 cannot be discarded as unphysical and the attempt
to explain them has led to the important concept of antiparticles.
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2.3 Projection operators

Instead of summing over all the four states in Eq. (2.22), a partial sum
over positive or negative energy states has a nice physical interpretation
as projection operator for positive or negative energy states.∑

i=1,2

|ψi〉〈ψi| = ψ1ψ
†
1 + ψ2ψ

†
2 = Λ+, (2.23)

∑
i=3,4

|ψi〉〈ψi| = ψ3ψ
†
3 + ψ4ψ

†
4 = Λ−, (2.24)

where Λ+ and Λ− are known as projection operators for positive and neg-
ative energy states. Substituting the normalized state vectors (2.16) and
(2.17) in Eqs. (2.23) and (2.24), we obtain expressions for the projection
operators.

Λ+ =
1

2

(
I +

α · p+ βµ

W

)
. (2.25)

Λ− =
1

2

(
I − α · p+ βµ

W

)
. (2.26)

It can be easily verified that Λ+ acting on positive energy states ψ1 or ψ2

yields unity whereas Λ+ acting on negative energy states ψ3 or ψ4 yields
zero. That is why Λ+ is called the projection operator for positive energy
states. An opposite feature is exhibited by Λ−.

Λ+ψi =
1

2

(
I +

α · p+ βµ

W

)
ψi =

{
ψi, i = 1, 2;
0, i = 3, 4.

(2.27)

Λ−ψi =
1

2

(
I − α · p+ βµ

W

)
ψi =

{
0, i = 1, 2;
ψi, i = 3, 4.

(2.28)

It can be easily verified that

Λ+ + Λ− = I. (2.29)

2.4 Sum over spin states

Let us now consider the scattering of a Dirac particle from an initial state
ψi to a final state ψf due to an interaction represented by the operator O.
The transition matrix element Tfi is given by1

Tfi = (ψ̄f Oψi), (2.30)

1In non-relativistic physics, we usually write ψ†Oψ but in relativistic physics, we
should write ψ̄Oψ since it is ψ̄ψ and not ψ†ψ, that transforms as a Lorentz scalar.
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where ψ̄f = ψ†f γ0 and γ0 ≡ β. If the spins of both the incident and
scattered particles are not observed, the transition probability is given by
the square of the matrix element, obtained by summing over the final spin
states and averaging over the initial spin states.

|Tfi|2 =
1

2

∑
i,f

(ψ̄f Oψi)(ψ̄f Oψi)†

=
1

2

∑
i,f

(ψ†fγ0Oψi)(ψ†iO
†γ0ψf ), (2.31)

where the summation indices i, f are over the two spin states denoted by
ψ1 and ψ2, corresponding to positive energy states only. The factor 1

2 is
due to averaging over the two initial spin states ψ1 and ψ2. Using the
algebra of matrix multiplication,

|Tfi|2 =
1

2

∑
i,f

∑
ρ,λ,ρ′,λ′

{(ψ†f )ρ (γ0O)ρλ (ψi)λ}{(ψ†i )ρ′ (O
†γ0)ρ′λ′(ψf )λ′}

=
1

2

∑
i,f

∑
ρ,λ,ρ′,λ′

(ψ†f )ρ (γ0O)ρλ (ψiψ
†
i )λρ′ (O

†γ0)ρ′λ′(ψf )λ′

=
1

2

∑
i,f

∑
ρ,λ,ρ′,λ′

(γ0O)ρλ (ψiψ
†
i )λρ′ (O

†γ0)ρ′λ′(ψfψ
†
f )λ′ρ

=
1

2

∑
ρ,λ,ρ′,λ′

(γ0O)ρλ (Λ+
i )λρ′ (O†γ0)ρ′λ′(Λ

+
f )λ′ρ

=
1

2
Tr (γ0OΛ+

i O
† γ0 Λ+

f ). (2.32)

In the above equation, Λ+
i and Λ+

f are the projection operators of the
initial and final particle, as defined in Eq. (2.27), obtained after summing
over the two spin states corresponding to the positive energy state.

Λ+
i =

1

2

(
I +

α · pi + βm

Wi

)
, (2.33)

Λ+
f =

1

2

(
I +

α · pf + βm

Wf

)
. (2.34)

2.5 In Feynman’s notation

Multiply the Dirac equation (2.2) by β from the left

(c βα · p+mc2)ψ = βEψ. (2.35)
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Using the natural units ~ = 1, c = 1 and introducing γ matrices

γ0 = β =

[
I 0
0 −I

]
, γ = βα =

[
0 σ

−σ 0

]
, (2.36)

we can rewrite the Dirac equation after rearrangement in the form

p/ψ = mψ, with p/ = γ0E − γ · p. (2.37)

Writing the characteristic equation for the matrix p/,∣∣∣∣ E − λ −σ · p
σ · p −E − λ

∣∣∣∣ = 0, (2.38)

we get
−(E2 − λ2) + (σ · p)2 = 0,

from which we obtain the eigenvalues of the matrix p/.

λ2 = E2 − p2 = m2; λ = ±m. (2.39)

From (2.39), we find that E can have both positive and negative values.

E2 = p2 +m2; E = ±
√
p2 +m2 = ±Ep; (2.40)

where Ep is always a positive quantity. The two eigenvalues of p/ obtained
in Eq. (2.39) lead to two equations, one for ‘positive eigenvalue’ state and
the other for ‘negative eigenvalue’ state.

p/ψp = mψp, (2.41)

p/ψn = −mψn, (2.42)

where ψp and ψn denote the positive and negative eigenvalue states. The
equation for ψn is obtained by reversing the sign of energy and momentum
so that p/ is changed into −p/. The state ψn which represents the negative
energy electron with momentum −p is to be associated with the state of a
positron with positive energy and momentum +p, according to the Dirac
hole theory.

2.5.1 Positive eigenvalue states

Writing Eq. (2.41) in the 2 × 2 matrix form, choosing a two component

form

[
φa
φb

]
for ψp, we get[

Ep −σ · p
σ · p −Ep

] [
φa
φb

]
= m

[
φa
φb

]
, (2.43)



2. The Dirac Equation and its Solutions 31

which yields two coupled equations in φa and φb.

Epφa − σ · pφb = mφa −→ φa
φb

=
σ · p
Ep −m

(2.44)

σ · pφa − Epφb = mφb −→ φb
φa

=
σ · p
Ep +m

(2.45)

As p→ 0, Eq. (2.44) becomes indeterminate. So, we choose the solution
(2.45) for positive eigenvalue states with φa = χ±. Hence

ψp =

[
χ±

σ · p
Ep+mχ±

]
. (2.46)

2.5.2 Negative eigenvalue states

In a similar way, let us obtain two coupled equations for ψn choosing a

two component form

[
φA
φB

]
for ψn.

[
Ep −σ · p
σ · p −Ep

] [
φA
φB

]
= −m

[
φA
φB

]
, (2.47)

The coupled equations yield the ratio φA/φB.

EpφA − σ · pφB = −mφA −→ φA
φB

=
σ · p
Ep +m

(2.48)

σ · pφA − EpφB = −mφB −→ φB
φA

=
σ · p
Ep −m

(2.49)

Since (2.49) becomes indeterminate as p→ 0, we shall choose the solution
(2.48) with φB = χ±. Hence

ψn =

[
σ · p
Ep+mχ±

χ±

]
. (2.50)

Earlier, we have normalized the Dirac wave functions ψ†ψ to 1 but
this normalization is not relativistically invariant. Since ψ†ψ (which is the
probability density) transforms as the zeroth component of a four-vector
current, it is possible to make a relativistically invariant normalization
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by setting it equal to the zeroth component of a suitable four-vector, say,
energy-momentum four-vector. Feynman2 has chosen the normalization3

ψ†pψp = 2Ep or equivalently ψ̄pψp = ψ†pγ0ψp = 2m, (2.51)

for positive eigenvalue solutions. The normalized solutions ψp are

ψp =
√
Ep +m

[
χ±

σ · p
Ep+mχ±

]
. (2.52)

It can be easily verified that∑
spins

ψpψ̃p = p/+m. (2.53)

The normalized negative eigenvalue solutions are

ψn =
√
Ep +m

[
σ · p
Ep+mχ±

χ±

]
, (2.54)

the normalization being

ψ†nψn = 2Ep; or equivalently ψ̄nψn = ψ†nγ0ψn = −2m. (2.55)

It can be easily verified by matrix multiplication that∑
spins

ψnψ̄n = p/−m. (2.56)

It can be verified that∑
spins

{ψpψ̄p − ψnψ̄n} = 2mI. (2.57)

The operators p/+m and p/−m are the projection operators for the positive
and negative eigenvalue states.

(p/+m)ψp = 2mψp,
(p/+m)ψn = 0,
(p/−m)ψp = 0,
(p/−m)ψn = −2mψn.

(2.58)

2R. P. Feynman, Quantum Electrodynamics, W. A. Benjamin, Inc., New York (1962).
3Schweber et al. (1956) choose a slightly different normalization ψ̄pψp = 1 and

ψ̄nψn = −1 such that∑
spins

(ψ̃pψp − ψ̃nψn) = 4 and
∑
spins

(ψpψ̃p − ψnψ̃n) = I.
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Let us now write down explicitly the normalized Feynman wave func-
tions for the two spin orientations4 of the positive and negative eigenvalue
states.

ψ1 = ψp↑ = N


1
0
pz

Ep+m
p+

Ep+m

 ; ψ2 = ψp↓ = N


0
1
p−

Ep+m
−pz
Ep+m

 ; (2.59)

ψ3 = ψn↑ = N


pz

Ep+m
p+

Ep+m

1
0

 ; ψ4 = ψn↓ = N


p−

Ep+m
−pz
Ep+m

0
1

 ; (2.60)

with the normalization factor

N =
√
Ep +m.

Let us now arrange all the four solutions of the Feynman equation for
the free particle side by side to form a matrix S(p).

S(p) = (Ep +m)1/2


1 0 pz

Ep+m
p−

Ep+m

0 1 p+
Ep+m

−pz
Ep+m

pz
Ep+m

p−
Ep+m 1 0

p+
Ep+m

−pz
Ep+m 0 1

 . (2.61)

It can be easily verified that the matrix S(p) can be written in a
compact form as

S(p) =
√
Ep +m

(
1 +

α · p
Ep +m

)
=
√
Ep +m

(
1 +

γ0 γ · p
Ep +m

)
. (2.62)

If ψ1(0), ψ2(0), ψ3(0) and ψ4(0) are the fundamental four-spinors as
given by Eq. (2.19) in the limiting case p→ 0, then

ψi(p) = S(p)ψi(0). (2.63)

Equation (2.63) enables you to go from the free particle solutions given
in the rest frame to any other frame of reference in which the particle has
momentum p. So, S(p) is the Lorentz boost operator.

4The two spin orientations, spin up and spin down are denoted by arrow marks ↑
and ↓ in Eqs. (2.59) and (2.60).
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It may be observed that the positive energy spinors of Dirac given
by Eq. (2.16) coincide with the positive eigenvalue spinors of Feynman
given by Eq. (2.59), except for normalization factor; whereas the nega-
tive energy spinors of Dirac given by Eq. (2.17) differ from the negative
eigenvalue spinors of Feynman given by Eq. (2.60) with respect to the
sign of the momentum vector p. The source of this discrepancy can easily
be traced. The negative energy solutions of the Dirac equation are ob-
tained by changing the sign of energy alone and not momentum, whereas
in Feynman’s negative eigenvalue equation, the signs of both energy and
momentum are reversed. A hole in the negative energy sea of electrons
with energy −Ep and momentum −p is equivalent to a positron with en-
ergy Ep and momentum p. In other words, the absence of an electron with
energy −Ep and momentum −p in the negative energy sea is interpreted
as a positron with energy Ep and momentum p. If the spin projection of
the negative energy electron is + 1

2 , then the associated positron will have
spin projection − 1

2 .
For the sake of clarity, we can rewrite the four solutions of the Dirac

equations (2.59) and (2.60) in Feynman notation as

ψ1 = ψp↑(Ep,p) = u↑(Ep,p) = u1(Ep,p), (2.64)

ψ2 = ψp↓(Ep,p) = u↓(Ep,p) = u2(Ep,p), (2.65)

ψ3 = ψn↑(−Ep,−p) = u↑(−Ep,−p) = v↓(Ep,p) = v2(Ep,p), (2.66)

ψ4 = ψn↓(−Ep,−p) = u↓(−Ep,−p) = v↑(Ep,p) = v1(Ep,p). (2.67)

In the above equations, we have introduced a new notation, replacing
the positive energy solutions by electron spinors u1, u2 and the negative
energy solutions by positron spinors v1, v2.

Generally, ψi, (i = 1, 2, 3, 4) is used to denote the plane wave solutions
of the Dirac equation for free particle.

ψi = uie
ip·x or ψi = uie

i(p·x−Et) = uie
−ip·x, (2.68)

depending upon whether we wish to represent the plane wave in the three-
dimensional space or four-dimensional space. The four dimensional space-
time is preferred for describing any phenomenon in a Lorentz invariant
way. Bold italics p, x are used to denote the three-dimensional vectors
and bold upright letters p, x are used to denote the four-vectors (energy-
momentum four vector and the space-time four-vector). The plane wave
part is suppressed in our discussion till now and we have concentrated
only on the spinor part. In the application to Quantum Electrodynamics,
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we find it convenient to use the symbols u1, u2 to denote electron spinors
and v1, v2 for positron spinors. The summation over the spins yield∑

spins

u(p)ū(p) =
∑
1,2

ui(p)ūi(p) = p/+m; (2.69)

∑
spins

v(p)v̄(p) =
∑
1,2

vi(p)v̄i(p) = p/−m. (2.70)

2.5.3 Sum over spin states

Let us now reconsider the problem of summing over spin states using
Feynman’s notation. The square of the matrix element (2.31) can be
evaluated using Feynman’s projection operator for positive energy states.

|Tfi|2 =
1

2

∑
if

(ψ̄fOψi)(ψ̄fOψi)†

=
1

2

∑
if

(ψ̄fOψi)(ψ†iO
†ψ̄†f )

=
1

2

∑
if

(ψ̄fOψi)(ψ̄iγ0O†γ0ψf )

=
1

2

∑
if

(ψ̄fOψi)(ψ̄iÕψf ), (2.71)

where
∑

if denotes the summation over the positive energy spin states of

the incident and scattered particle and Õ stands for

Õ = γ0O†γ0. (2.72)

Replacing
∑

i ψiψ̄i by (p/i+m) which is the projection operator for positive
energy states, we obtain

|Tfi|2 =
1

2

∑
f

(ψ̄fO(p/i +m)Õψf ). (2.73)

Using the algebra of matrix multiplication, we get

|Tfi|2 =
1

2

∑
f

∑
ρ,λ,ρ′,λ′

(ψ̄f )ρ(O)ρλ(p/i +m)λρ′(Õ)ρ′λ′(ψf )λ′

=
1

2

∑
f

∑
ρ,λ,ρ′,λ′

(O)ρλ(p/i +m)λρ′(Õ)ρ′λ′(ψf ψ̄f )λ′ρ. (2.74)
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Summing over f over the two positive energy spin states and replacing∑
f ψf ψ̄f by (p/f + m), which is the projection operator for the positive

energy states, in Eq. (2.74); we get

|Tfi|2 =
1

2
Tr
(
O (p/i +m) Õ (p/f +m)

)
. (2.75)

The transition probability per unit time is given by Fermi’s golden rule

Transition rate = 2π(ΠN)−1|Tfi|2 ρf , (2.76)

where ΠN denotes the normalization factor 2E for each of the initial and
final particles and ρf is the density of states for the final particle. The
cross section is the transition rate per unit incident flux.

2.6 A Consistency Check

We have deduced two different expressions (2.32) and (2.75), for the
square of the transition amplitude |Tfi|2, one using the Dirac matrices
and the other using Feynman’s notation. They must be equivalent. To
show this, let us start with the projection operator Λ+ for positive energy
states as given by Eq. (2.23). (Please note that in natural units W = Ep.)

Λ+ =
1

2

(
I +

α · p+ βm

Ep

)
=

1

2Ep
(Ep +α · p+ βm). (2.77)

Multiply Eq. (2.77) by β2 = I from the right to obtain

Λ+ =
1

2Ep
(βEp +α · pβ +m)β

=
1

2Ep
(βEp − βα · p+m)β

=
1

2Ep
(γ0Ep − γ · p+m)β =

1

2Ep
(p/+m)β. (2.78)

Substituting the expression (2.78) for Λ+, into Eq. (2.32) and remember-
ing that β ≡ γ0 and Tr(ABC) = Tr(BCA), we get

|Tfi|2 =
1

8EiEf
Tr
(
γ0O(p/i +m)γ0O†γ0(p/f +m)γ0

)
=

1

8EiEf
Tr
(
O(p/i +m)Õ(p/f +m)

)
. (2.79)
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This is identical with Eq. (2.75) except for the additional factor 1/(4EiEf )
which we include, in Feynman’s formalism, as normalization factor (ΠN)−1,
as indicated in Eq. (2.76).

2.7 Algebra of γ Matrices

The square of the transition matrix element given by Eq. (2.75) involves
the trace of a product of γ matrices. So, it will be fruitful to study the
γ matrices and their properties for evaluating he traces. The γ matrices
obey the following relations:

γ2
0 = 1, γ2

x = γ2
y = γ2

z = −1,

γ0γx,y,z + γx,y,zγ0 = 0,

γxγy + γyγx = 0, γyγz + γzγy = 0, γzγx + γxγz = 0.

(2.80)

Using a unified notation, Eq. (2.80) can be written as

γµγν + γνγµ = 2gµν , (2.81)

where gµν is a metric defined by

gµν =


0, µ 6= ν

+1, µ = ν = 0
−1, µ = ν = x, y, z.

(2.82)

Besides, the matrix γ0 is Hermitian whereas the matrices γx, γy, γz are
anti-Hermitian.

γ†0 = γ0; γ†k = −γk, k = x, y, z. (2.83)

It is convenient to define5 a matrix γ5 which occurs frequently.

γ5 = γ0γxγyγz = −i
[

0 I
I 0

]
. (2.84)

It is easy to verify that

γ†5 = −γ5; γ2
5 = −1; γ5γµ + γµγ5 = 0. (2.85)

Following Feynman, we can define a/ as follows:

a/ = a0γ0 − axγx − ayγy − azγz. (2.86)

5Feynman’s definition of γ5 = γxγyγzγ0 differs by a change in sign.
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It can be shown that

a/γ5 = −γ5a/; (2.87)

a/b/ = −b/a/+ 2 a · b (a · b = aµbµ); (2.88)

γxa/γx = a/+ 2axγx; (2.89)

γµa/γµ = −2a/; (2.90)

γµa/b/γµ = 4 a · b; (2.91)

γµa/b/c/γµ = −2c/b/a/. (2.92)

It is important to recall the elementary properties of traces,

Tr (ABC) = Tr (BCA) = Tr (CAB),

Tr (A+B) = TrA+ TrB,
(2.93)

for evaluating the traces involving a product of γ matrices. It is known
that the trace of a γ matrix is zero.

Tr γµ = 0 (µ = 0, x, y, z). (2.94)

Also the trace of an odd number of γ matrices vanishes. To prove this,
we start with the relation (2.85) which is equivalent to

γ5γµ(γ5)−1 = −γµ. (2.95)

It follows that

γ5γµ1γµ2 · · · γµn(γ5)−1 = (−1)nγµ1γµ2 · · · γµn . (2.96)

Taking the trace of both sides of Eq. (2.96) and using the elementary
property of the trace that Tr (ABC) = Tr (BCA), we obtain immediately
that

Tr(γµ1 · · · γµn) = (−1)nTr(γµ1 · · · γµn). (2.97)

Equation (2.97) implies that the trace of an odd number of gamma ma-
trices vanishes.

If n is even, it is always possible to reduce it to n − 2 factors. For
example,

Tr(γµγν) = Tr (γνγµ)

= 1
2 Tr (γνγµ + γµγν), since Tr(AB)=Tr(BA)

= gµν Tr I, using Eq. (2.81)

= 4 gµν . (2.98)



2. The Dirac Equation and its Solutions 39

In a similar way, it can be shown that

Tr (γµγνγργλ) = 4gµλgνρ − 4gλνgρµ + 4gλρgµν . (2.99)

The following traces which occur frequently are given6.

Tr (a/b/) = 1
2Tr (a/b/+ b/a/) = Tr (a · b) = 4 a · b,

Tr (a/b/c/) = 0.
(2.100)

Also, it can be shown that the trace of a product of γ matrices is the same
as the product of γ matrices taken in the reverse order.

Tr (a/b/c/d/) = Tr (d/c/b/a/). (2.101)

2.8 An illustrative example

We shall illustrate the foregoing discussion by evaluating the trace in
Eq. (2.75) when the transition operator is given by

O = γ0. (2.102)

Substituting the operator O in Eq. (2.75), we obtain

|Tfi|2 =
1

2
Tr
(
γ0(p/i +m) γ̃0 (p/f +m)

)
, (2.103)

where p/ = γ0E − γ · p. Since γ̃0 = γ0 and the trace of a product of an
odd number of γ matrices vanishes,

Tr
(
γ0(p/i +m) γ0 (p/f +m)

)
= Tr

(
γ0 p/i γ0 p/f +m2

)
= Tr

(
(−p/iγ0 + 2Ei)γ0p/f +m2

)
= Tr

(
−p/ip/f + 2Eiγ0p/f +m2

)
= −4 pi · pf + 8EiEf + 4m2. (2.104)

Equations (2.98) and (2.100) have been used in deducing the last step
in the above equation. Expanding the scalar product of the four-vectors
pi · pf = EiEf − pi · pf and rearranging, we get

Tr
(
γ0(p/i +m) γ0 (p/f +m)

)
= 4EiEf + 4pipf cos θ + 4m2, (2.105)

where θ denotes the angle between the two vectors pi and pf .

6We use bold upright letters a,b to denote the four-vectors to distinguish them from
the three-vectors for which we use bold italics a, b.
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Review Questions

2.1 Write down the Dirac equation for a free particle using the α and β ma-
trices and obtain its solutions. How many solutions are there and how are
they interpreted? Discuss their orthogonal and closure properties.

2.2 Construct the projection operators for the positive and negative energy
states of the Dirac Hamiltonian and demonstrate how they pick up only
positive or negative energy states.

2.3 Obtain the Dirac equation in Feynman’s notation using γ matrices and
find its free particle solutions. Show that the positive eigenvalue solutions
coincide with those of Dirac whereas the negative eigenvalue solutions
differ from the negative energy solutions of Dirac. How will you account
for this discrepancy?

2.4 A Dirac particle is scattered from an initial state to a final state due to
an interaction represented by the operator O. If the initial and final state
spins are not observed, how will you calculate the transition probability
by summing over the final spin states and averaging over the initial spin
states.

2.5 Write down the gamma matrices and discuss their properties. Show that
the trace of a product of an odd number of γ matrices vanishes. Evaluate
(a) Tr (γµγν) and (b) Tr (γµγνγργλ).

Problems

2.1 Show that the positive eigenvalue states ψp and the negative eigenvalue
states ψn of the Dirac equation, given by

ψp =
√
Ep +m

[
χ±

σ · p
E+m χ±

]
, ψn =

√
Ep +m

[
σ · p
Ep+mχ±
χ±

]
.

are normalized to yield

ψ†pψp = 2Ep, ψ†nψn = 2Ep,

and
ψ̄pψp = 2m, ψ̄nψn = −2m.

2.2 Show that, in Feynman’s notation, a sum over spins of positive eigenvalue
states and a sum over spins of negative eigenvalue states, done separately,
yield ∑

spins

ψpψ̄p = p/+m;
∑
spins

ψnψ̄n = p/−m.

Show that they can be considered as unnormalized projection operators
for positive and negative eigenvalue states of Dirac equation written in
Feynman’s notation. Hence obtain the normalized projection operators.
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2.3 Given the transition operator O = γ ·A, where A is a vector in the three-
dimensional space and not an operator, calculate the transition probability
for an electron if the initial and final spin states are not observed.

2.4 Given the transition operator O = γµJµ where Jµ is a four-vector current,
calculate the transition probability for an electron if the initial and final
spin states are not observed.

2.5 Show that if the operator O = a/b/c/, then Õ = γ0O†γ0 = c/b/a/.

Solutions to Problems

2.1 First let us show that the Pauli spin vectors are orthonormal.

χ†+χ+ =
[

1 0
] [ 1

0

]
= 1. χ†+χ− =

[
1 0

] [ 0
1

]
= 0.

χ†−χ− =
[

0 1
] [ 0

1

]
= 1.

Altogether, there are four solutions for the Dirac equation. Let us denote
the two solutions that correspond to positive eigenvalue, one with spin up
and the other with spin down by ψp↑, ψp↓. The other two solutions that
correspond to negative eigenvalue relating to the two spin orientations,
spin-up and spin-down are denoted by ψn↑, ψn↓. Using the orthonormal
property of the Pauli spin vectors, it is shown below by direct matrix
multiplication that

ψ†p↑ψp↑ = 2Ep. ψ†
n↑
ψn↑ = 2Ep.

ψ†p↑ψp↑ = (Ep +m)
[
χ†+

σ·p
Ep+mχ

†
+

] [ χ+

σ·p
Ep+mχ+

]

= (Ep +m)

{
1 +

(σ · p)2

(Ep +m)2

}
= (Ep +m)

{
1 +

p2

(Ep +m)2

}
= (Ep +m)

{
1 +

E2
p −m2

(Ep +m)2

}
,

using the relation E2
p = p2 +m2

= 2Ep.
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ψ†n↑ψn↑ = (Ep +m)
[
σ·p
Ep+mχ

†
+ χ†+

] [ σ·p
Ep+mχ+

χ+

]

= (Ep +m)

{
(σ · p)2

(Ep +m)2
+ 1

}
= (Ep +m)

{
p2

(Ep +m)2
+ 1

}
= 2Ep.

In a similar way, it can be shown that ψ†p↓ψp↓ = 2Ep. ψ†
n↓
ψn↓ = 2Ep.

Further,

ψ̄p↑ψp↑ = ψ†p↑γ0ψp↑

= (Ep +m)
[
χ†+

σ·p
Ep+mχ

†
+

] [
I 0
0 −I

] [ χ+

σ·p
Ep+mχ+

]

= (Ep +m)
[
χ†+

σ·p
Ep+mχ

†
+

] [ χ+

− σ·p
Ep+mχ+

]

= (Ep +m)

{
1− (σ · p)2

(Ep +m)2

}
= (Ep +m)

{
1− p2

(Ep +m)2

}
= (Ep +m)

{
1−

E2
p −m2

(Ep +m)2

}
,

using the relation E2
p = p2 +m2

= 2m.

ψ̄n↑ψn↑ = ψ†n↑γ0ψn↑

= (Ep +m)
[
σ·p
Ep+mχ

†
+ χ†+

] [ I 0
0 −I

] [ σ·p
Ep+mχ+

χ+

]

= (Ep +m)
[
σ·p
Ep+mχ

†
+ χ†+

] [ σ·p
Ep+mχ+

−χ+

]

= (Ep +m)

{
(σ · p)2

(Ep +m)2
− 1

}
= (Ep +m)

{
p2

(Ep +m)2
− 1

}
= −2m.

Similarly, it follows that ψ̄p↓ψp↓ = 2m; ψ̄n↓ψn↓ = −2m.
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2.2 The quantities ψpψ̄p and ψnψ̄n are matrices.

It can be easily checked that χ+χ
†
+ + χ−χ

†
− is a unit matrix.

χ+χ
†
+ + χ−χ

†
− =

[
1 0
0 1

]
.

∑
spins

ψpψ̄p = (Ep +m)

{[
χ+

σ·p
Ep+mχ+

] [
χ†+

σ·p
Ep+mχ

†
+

] [
I 0
0 −I

]

+

[
χ−

σ·p
Ep+mχ−

] [
χ†−

σ·p
Ep+mχ

†
−

] [ I 0
0 −I

]}

= (Ep +m)

 1
σ·p
Ep+m

σ·p
Ep+m

p2

(Ep+m)2

[ I 0
0 −I

]

= (Ep +m)

 1 − σ·p
Ep+m

σ·p
Ep+m − p2

(Ep+m)2


=

[
Ep +m −σ · p
σ · p −(Ep −m)

]
= p/+m,

since

p/+m = γ0Ep − γ · p+mI

=

[
Ep 0
0 −Ep

]
−
[

0 σ · p
−σ · p 0

]
+m

[
1 0
0 1

]
.

Similarly, it can be shown that∑
spins

ψnψ̄n = p/−m.

The operators p/+m and p/−m are called projection operators since they
pick out selectively the positive energy states and negative energy states
of the electron.

(p/+m)ψp = 2mψp; (p/+m)ψn = 0.
(p/−m)ψp = 0; (p/−m)ψn = −2mψn.

These projection operators are not normalized. The normalized projection

operators are
p/+m

2m for positive energy states and
m−p/
2m for negative energy

states.



44 Textbook of Relativistic Quantum Physics

2.3 From Eq. (2.75), we have

|Tfi|2 =
1

2
Tr
{
O (p/i +m) Õ (p/f +m)

}
,

where

Õ = γ0O†γ0.

The transition operator O, in the present case is γ ·A. Substituting it, we
shall write down the product of operators {· · · }.

{· · · } = γkAk (γµ(pi)µ +m) γ0γ
†
lA
∗
l γ0 (γν(pf )ν +m)

= γkAk (γµ(pi)µ +m) γlA
∗
l (γν(pf )ν +m) .

We have used above the relations γ†l = −γl, γ0γk = −γkγ0 and γ2
0 = 1.

Since the trace of a product of odd number of γ matrices is zero,

Tr {· · · } = Tr{γkγµγlγνAkA∗l (pi)µ(pf )ν + γkγlAkA
∗
lm

2}.

The indices k and l denote the components of a three vector and the indices
µ and ν denote the components of a four-vector. We have earlier evaluated
the traces of even number of γ matrices.

Tr(γkγµγlγν) = 4gkµglν − 4gklgµν + 4gkνgµl;

Tr(γkγl) = 4gkl.

Using the above results,

|Tfi|2 =
1

2
{4gkµglν(pi)µAk(pf )νA

∗
l − 4gklgµνAkA

∗
l (pi)µ(pf )ν

+4gkνgµl(pf )νAk(pi)µA
∗
l + 4gklAkA

∗
lm

2
}

=
1

2

{
4(pi ·A)(pf ·A

∗) + 4(A ·A∗)(pi · pf )

+4(pf ·A)(pi ·A
∗)− 4m2A ·A∗

}
= 2

{
(pi ·A)(pf ·A

∗) + (pf ·A)(pi ·A
∗)

+(A ·A∗)(pi · pf −m2)
}
,

where pi · pf denotes the scalar product of four vectors, defined by

pi · pf = EiEf − pi · pf .

2.4 From Eq. (2.75), we have

|Tfi|2 =
1

2
Tr
{
O (p/i +m) Õ (p/f +m)

}
,
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where

Õ = γ0O†γ0.

The transition operator O, in the present case is γµJµ where Jµ is a four-
vector current.

Õ = γ0γ
†
µγ0J

∗
µ = γµJ

∗
µ.

Substituting them, we shall write down the product of operators {· · · }.

{· · · } =
[
γµ(p/i +m)γν(p/f +m)

]
JµJ

∗
ν

Since the trace of a product of odd number of γ matrices is zero, we find

|Tfi|2 =
1

2

[
Tr(γµp/iγνp/f )JµJ

∗
ν +m2γµγνJµJ

∗
ν

]
=

1

2

[
Tr(γµγργνγλ)(pi)ρ(pf )λJµJ

∗
ν +m2Tr(γµγν)JµJ

∗
ν

]
=

1

2
[{4gµλgνρ − 4gµνgλρ + 4gµρgνλ} (pi)ρ(pf )λJµJ

∗
ν

+4m2(gµν)JµJ
∗
ν

]
=

1

2

[
4(pf · J)(pi · J

∗)− 4(pi · pf )(J · J∗)

+4(pi · J)(pf · J
∗) + 4m2(J · J∗)

]
= 2

[
(pi · J)(pf · J

∗) + (pf · J)(pi · J
∗) + (m2 − pi · pf )J · J∗

]
,

where (pi · J), . . . are scalar products of four-vectors.

2.5 Given
O = a/b/c/,

then

Õ = γ0O†γ0

= γ0(a/b/c/)†γ0

= γ0(γµaµγνbνγλcλ)†γ0

= γ0

{
(γµγνγλ)†aµbνcλ

}
γ0

= γ0(γ†λγ
†
νγ
†
µaµbνcλ)γ0

= γ0 {(γ0c0 + γ · c)(γ0b0 + γ · b)(γ0a0 + γ · a)} γ0,

since γ†0 = γ0 and γ†k = −γk, k = 1, 2, 3. Switching the γ0 in the front
to the rear side using the commutation relations γ0γ = −γγ0 and noting
that γ2

0 = 1, we get

Õ = (γ0c0 − γ · c)(γ0b0 − γ · b)(γ0a0 − γ · a)

= c/b/a/



Chapter 3

The Dirac Equation with
External Potentials

Having considered the free particle Dirac equation and its solutions in the
last chapter, let us consider now the Dirac equation with external poten-
tials. Let us investigate how the charged spin- 1

2 particle interacts with the
external fields such as electro-magnetic field. Even before the advent of
Dirac’s theory, this was studied extensively using the Schrödinger equation
along with the concept of spin, as introduced by Pauli, in order to explain
the experimental observations. In Dirac’s theory, the spin comes out as
a natural consequence and let us examine whether an effective Hamilto-
nian can be obtained in the non-relativistic limit, that can be compared
with the earlier theory that was developed with ad hoc inputs. The ef-
fective Hamiltonian obtained from Dirac’s equation includes a magnetic
moment term with the correct gyro-magnetic ratio for the electron spin,
spin-orbit coupling term and the Darwin term. It is also shown how the
Dirac equation can be solved for a spherically symmetric potential such
as the Coulomb potential to obtain the energy levels of hydrogen-like
atom with the fine structure splitting arising from spin-orbit interaction
in agreement with the experimental observation.

3.1 Dirac Equation with Electromagnetic Field

The Dirac equation for a spin- 1
2 particle of charge e in an electro-magnetic

field, characterized by the vector and scalar potentials A and φ, is given

46
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by1 {
cα ·

(
p− eA

c

)
+ βmc2

}
ψ = (E − eφ)ψ. (3.1)

The electric and magnetic field strengths of the electro-magnetic field are
defined in terms of the vector and scalar potentials.

E = −1

c

∂A

∂t
−∇φ; B = curlA =∇×A. (3.2)

3.2 Non-relativistic approximation to Dirac
equation

3.2.1 Constant magnetic field

Let φ = 0 and P = p− eA
c . Then Eq. (3.1) becomes

(cα · P + βmc2)ψ = Eψ. (3.3)

The state vector ψ is a four component spinor but we shall use a short-
hand notation as two-component spinor. Now, Eq. (3.3) can be written
as a 2× 2 matrix equation{

c

[
0 σ · P

σ · P 0

]
+mc2

[
I 0
0 −I

]}[
ϕa
ϕb

]
= E

[
ϕa
ϕb

]
. (3.4)

The matrix equation (3.4) yields two coupled equations in ϕa and ϕb.

cσ · Pϕb + (mc2 − E)ϕa = 0; (3.5)

cσ · Pϕa − (mc2 + E)ϕb = 0. (3.6)

We are interested in the positive energy states with ϕa as large component
and ϕb as small component. If ε is the kinetic energy of the electron, then

E = mc2 + ε,

1The Dirac equation for the electron with negative charge (−e) is{
cα ·

(
p+

eA

c

)
+ βmc2

}
ψ = (E + eφ)ψ.
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where m is the rest mass of the charged particle. For small ε, one can
go to the non-relativistic limit and investigate the Dirac equation in the
presence of constant magnetic field. From Eq. (3.6), we get

ϕb =
cσ · P
mc2 + E

ϕa ≈
cσ · P
2mc2

ϕa. (3.7)

ϕb is of the order of (v/c)ϕa and hence it is referred to as a small compo-
nent. Substituting (3.7) in Eq. (3.5), we get{

(σ · P )2

2m
+ (mc2 − E)

}
ϕa = 0 or

(σ · P )2

2m
ϕa = εϕa. (3.8)

The above equation is the non-relativistic limit of Dirac equation and it
is an equation in ϕa. Using the vector algebra, we get

(σ · P )2 = P · P + iσ · (P × P ), (3.9)

P × P =

(
p− eA

c

)
×
(
p− eA

c

)
= −e

c
(A× p+ p×A) = i~

e

c
∇×A. (3.10)

Substituting (3.9) and (3.10) into Eq. (3.8) and observing that the strength
of the magnetic field B =∇×A, we get{

1

2m

(
p− eA

c

)2

− e~
2mc

σ ·B

}
ϕa = εϕa. (3.11)

One can recognize that the second term on the left hand side of the above
equation as arising from the magnetic dipole moment

M =
e~

2mc
σ = µBσ, (3.12)

where µB = e~/2mc is known as the Bohr magneton.

It is possible to expand the first term on the left hand side of Eq.
(3.11) to get more physical insight.(

p− eA

c

)2

= p2 +
e2A2

c2
− e

c
(p ·A+A · p)

= p2 +
e2A2

c2
+
ie~
c
∇ ·A− 2e

c
A · p. (3.13)
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The last step in Eq. (3.13) is obtained by treating p as a differential
operator −i~∇.

p ·A = −i~(∇ ·A+A ·∇) = −i~∇ ·A+A · p.

Further, for constant magnetic field2,

A =
1

2
B × r,

such that

A · p =
1

2
B × r · p =

1

2
B · (r × p) =

1

2
B ·L. (3.14)

Substituting the results (3.13) and (3.14) into Eq. (3.11), we get{
p2

2m
+
e2A2

2mc2
+

ie~
2mc
∇ ·A− e

mc
B · (L+ ~σ)

}
ϕa = εϕa.

Since the spin angular momentum S = 1
2~σ, we can rewrite the above

equation as{
p2

2m
+
e2A2

2mc2
+

ie~
2mc
∇ ·A− e

mc
B · (L+ 2S)

}
ϕa = εϕa.(3.15)

The last term on the left hand side of Eq. (3.15) is due to the interaction
of orbital and spin angular momentum with the external magnetic field
B. It is remarkable that the Dirac equation yields the gyromagnetic ratio
for spin as 2.

3.2.2 Static electric field or Electrostatic field

Let us now consider a spin- 1
2 particle of charge e in an electrostatic field

of strength E. In this case, the vector potential A = 0.

eE = −∇V, V = eφ. (3.16)

2It can be easily checked that if the magnetic field B is constant, then the relation

A =
1

2
B × r,

(
Ax = 1

2 (Byz −Bzy), Ay = 1
2 (Bzx−Bxz), Az = 1

2 (Bxy −Byx)
)

satisfies the Eq. curlA = B.

(curlA)x = (∇×A)x =
∂Az
∂y
− ∂Ay

∂z
= Bx.
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The Dirac equation for the electrostatic potential can be written as

(cα · p+ βmc2)ψ = (E − eφ)ψ. (3.17)

This can be explicitly written in the 2× 2 matrix form.{
c

[
0 σ · p

σ · p 0

]
+mc2

[
I 0
0 −I

]}[
ϕa
ϕb

]
= (E − V )

[
ϕa
ϕb

]
.(3.18)

This leads to two coupled equations in ϕa and ϕb.

(E −mc2 − V )ϕa = cσ · pϕb; (3.19)

(E +mc2 − V )ϕb = cσ · pϕa. (3.20)

From Eq. (3.20), we obtain

ϕb =
cσ · p

E +mc2 − V
ϕa =

cσ · p
2mc2 + ε− V

ϕa, (3.21)

with E = ε + mc2. The total energy E is written as a sum of kinetic
energy (ε) and rest mass energy (mc2). Substituting (3.21) into (3.19),
we obtain an equation for ϕa.

(ε− V )ϕa = c(σ · p)
c

2mc2 + ε− V
(σ · p)ϕa

= c(σ · p)
c

2mc2
(
1 + ε−V

2mc2

)(σ · p)ϕa

=
(σ · p)

2m

(
1− ε− V

2mc2

)
(σ · p)ϕa

=

{
p2

2m
− εp2

4m2c2
+

1

4m2c2
(σ · p)V (σ · p)

}
ϕa. (3.22)

In Dirac equation, ϕa is only the large component of ψ and so only ψ
is normalized. So, a correction has to be made for normalization, when
we are using only ϕa.∫

ψ∗ψd3x =

∫ (
|ϕa|2 + |ϕb|2

)
d3x

=

∫ {
1 +

(σ · p
2mc

)2
}
|ϕa|2d3x

=

{
1 +

p2

4m2c2

}
|ϕa|2d3x

= |ϕN |2d3x = 1, (3.23)
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where

|ϕN |2 =

(
1 +

p2

4m2c2

)
|ϕa|2. (3.24)

In deducing Eq. (3.23), we have used an approximate expression for
ϕb ≈ σ·p

2mcϕa deduced from Eq. (3.21), neglecting the terms ε and V
which are very small compared to 2mc2. From Eq. (3.24), we get

ϕa =
ϕN(

1 + p2

4m2c2

)1/2
=

(
1− p2

8m2c2

)
ϕN . (3.25)

Substituting (3.25) in Eq. (3.22), we get{
ε− V − εp2

8m2c2
+

V p2

8m2c2

}
ϕN

=

{
p2

2m
− εp2

4m2c2
+

1

4m2c2
(σ · p)V (σ · p)

}(
1− p2

8m2c2

)
ϕN

=

{
p2

2m
− p4

16m3c2
− εp2

4m2c2
+

1

4m2c2
(σ · p)V (σ · p)

}
ϕN , (3.26)

retaining only terms up to the order 1
m3c2

. Simplifying Eq. (3.26), we get

ε ϕN =

{
p2

2m
+ V − p4

16m3c2
− εp2

8m2c2
− V p2

8m2c2

+
1

4m2c2
(σ · p)V (σ · p)

}
ϕN , (3.27)

In Eq. (3.27), the non-relativistic energy ε occurs also on the right-hand
side; for which one can substitute an approximate expression.

εp2 = p2ε = p2

(
p2

2m
+ V

)
=

p4

2m
+ p2V. (3.28)

Substituting (3.28) into Eq. (3.27) and simplifying, we can get an expres-
sion for the effective non-relativistic Hamiltonian Heff . Denoting ε on the
left hand side by Heff , we get

Heff =
p2

2m
+ V − p4

8m3c2
− 1

8m2c2
(p2V + V p2)

+
1

4m2c2
(σ · p)V (σ · p). (3.29)
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Remembering that p is an operator −i~∇, we find

(σ · p)V (σ · p) = −i~(σ ·∇)V (σ · p)

= −i~(σ ·∇V )(σ · p) + V (σ · p)(σ · p)

= −i~ {(∇V · p) + iσ ·∇V × p}+ V p2. (3.30)

If E is the electric field in which the particle is moving, then

eE = −∇V = −1

r

dV

dr
r. (3.31)

Using (3.31), we get

(σ · p)V (σ · p) = i~e(E · p)− ~eσ · E × p+ V p2

= i~e(E · p) + ~e
1

r

dV

dr
σ · r × p+ V p2

= i~e(E · p) + ~e
1

r

dV

dr
σ ·L+ V p2

= i~e(E · p) + e
2

r

dV

dr
S ·L+ V p2. (3.32)

Substituting (3.32) in Eq. (3.29) and simplifying, we get

Heff =
p2

2m
+ V − p4

8m3c2
− 1

8m2c2
(p2V − V p2)

+
1

4m2c2

{
i~e(E · p) +

2e

r

dV

dr
(S ·L)

}
. (3.33)

Since p is an operator, we get

pV = −i~(∇V + V∇) = i~eE + V p.

Equivalently,

[p, V ]− = i~eE.

It follows that

[p2, V ]− = p[p, V ]− + [p, V ]−p

= i~e(p · E + E · p). (3.34)
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Substituting (3.34) in Eq. (3.33), we get

Heff =
p2

2m
+ V − p4

8m3c2
− i~e

8m2c2
(p · E + E · p)

+
1

4m2c2

{
i~e(E · p) +

2e

r

dV

dr
(S ·L)

}
=

p2

2m
+ V − p4

8m3c2
− i~e

8m2c2
(p · E − E · p) +

1

4m2c2

2e

r

dV

dr
(S ·L)

=
p2

2m
+ V − p4

8m3c2
− ~2e

8m2c2
∇ · E +

1

4m2c2

2e

r

dV

dr
(S ·L). (3.35)

The last step is obtained by treating p as a gradient operator.

p · E = −i~∇ · E + E · p, such that p · E − E · p = −i~∇ · E.

Let us examine the effective Hamiltonian (3.35) that we have obtained
as the non-relativistic limit of Dirac equation in static electric potential.
The first term is the kinetic energy term, the second term is the scalar
potential energy term, the third term can be considered as the relativistic
correction3 to the kinetic energy, the fourth term is the Darwin term and
the fifth term is the spin-orbit coupling term.

Historically, the effective Hamiltonian (3.35) was obtained much be-
fore the discovery of Dirac equation and it is the greatest triumph of
Dirac equation that it yields the same effective Hamiltonian in the non-
relativistic limit.

3.3 The Dirac equation for a central potential

Let us consider the Dirac equation for a central potential (in natural units
with ~ = c = 1).

{α · p+ βm+ V (r)}ψ(r) = Eψ(r), (3.36)

where the potential V (r) is spherically symmetric and depends only on
the radial coordinate r and not on its angular coordinates θ, φ.

3Starting from the relativistic relation between energy and momentum, we get

E = (p2c2 +m2c4)1/2 = mc2
(

1 +
p2

m2c2

)1/2

= mc2
{

1 +
p2

2m2c2
− p4

8m4c4
+ · · ·

}
= mc2 +

p2

2m
− p4

8m3c2
+ · · · .
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The Dirac Hamiltonian H

H = α · p+ βm+ V (r) (3.37)

does not commute with the orbital angular momentum operator L but
commutes with the total angular momentum operator J = L + S and
another operator K defined by

K = β(σ ·L+ 1). (3.38)

Also, the operators J and K commute among themselves (vide Solved
Problem 2.2).

[H,J ]− = 0; [H,Jz]− = 0; [H,K]− = 0; [J ,K]− = 0 (3.39)

So, it is possible to find the simultaneous eigenfunctions and eigenvalues of
operators H, J , Jz and K. Thus the solutions for the Dirac equation with
a central potential are characterized by the quantum numbers j,m, κ.

Hψκ,j,m(r) = Eκ,j,mψκ,j,m(r); (3.40)

J2ψκ,j,m(r) = j(j + 1)ψκ,j.m(r); (3.41)

Jzψκ,j,m(r) = mψκ,j.m(r); (3.42)

Kψκ,j,m(r) = κψκ,j.m(r). (3.43)

Eigenvalues of the operator K

Squaring the operator K, we get

K2 = β(σ ·L+ 1)β(σ ·L+ 1)

= (σ ·L+ 1)(σ ·L+ 1)

= 1 + 2σ ·L+ (σ ·L)(σ ·L)

= 1 + σ ·L+L2, (3.44)

since β commutes with σ ·L and β2 = 1. Besides,

(σ ·L)2 = L2 + iσ · (L×L) = L2 − σ ·L, since L×L = iL.

Thus

K2 = (L+ 1
2σ)2 − 1

4
σ2 + 1 = J2 +

1

4
, (3.45)

since J = L+ 1
2σ and σ2 = 3.
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Thus, we find that a Dirac particle in central potential such as Hy-
drogen atom has eigenstates which are not only the eigenfunctions of the
operator J2 with eigenvalues j(j + 1) but also the eigenfunctions of the
operator K with eigenvalue κ.

κ2 = j(j + 1) +
1

4
= (j + 1

2)2 or κ = ±(j + 1
2). (3.46)

Since j can take positive half-odd integral values (j = 1
2 ,

3
2 ,

5
2 , · · · ), the

eigenvalues of K are κ = ±1,±2,±3, · · · , excluding zero.
The Hamiltonian H is a 4 × 4 matrix4 and so the eigenfunction is a

four-component column vector. But it is found more convenient to write
the Hamiltonian in a 2 × 2 matrix form, treating each element of which
as a 2×2 matrix. In a similar way, the eigenfunction ψ(r) can be written
in the two component form

ψ(r) =

[
Φa(r)
Φb(r)

]
, (3.47)

treating each element, in turn, as a two-component column vector known
as spinor.

3.3.1 Dirac Hamiltonian in spherical polar coordinates

Of the three terms in the Hamiltonian (3.37), only the first term requires
consideration, since the other two terms do not have any angular depen-
dence.

α · p = −iα ·∇. (3.48)

A convenient form for the gradient operator ∇ can be obtained from the
expansion of a triple vector product.

a× (b× c) = b(a · c)− c(a · b). (3.49)

Substituting a = b = r̂ and c =∇, we get on rearrangement

∇ = r̂(r̂ ·∇)− r̂ × (r̂ ×∇)

= r̂
∂

∂r
− i

r
{r̂ × (r × p)}

= r̂
∂

∂r
− i

r
(r̂ ×L), (3.50)

4The Hamiltonian H consists of three terms, of which the terms involving α and β
are 4× 4 matrices but the potential term is a scalar and so it should be multiplied by
4× 4 unit matrix. In general, in a matrix equation, all the terms should be treated as
matrices of the same dimension.
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where r̂ ≡ êr is the unit radius vector and L, the orbital angular momen-
tum operator. Substituting (3.50) into Eq. (3.48), we get

α · p = −i(α · r̂)
∂

∂r
− 1

r
α · (r̂ ×L)

= −i(α · r̂)
∂

∂r
+
i

r
(α · r̂)(σ ·L), (3.51)

using the relation (vide Solved Problem 2.3)

α · r̂ ×L = −i(α · r̂)(σ ·L). (3.52)

Using the definition (3.38) of the operator K, we can express the operator
σ · L in terms of K, by multiplying both sides of Eq. (3.38) by β and
using the property β2 = 1.

σ ·L = βK − 1. (3.53)

Substituting (3.53) into Eq. (3.51), we get

α · p = −i(α · r̂)
∂

∂r
+
i

r
(α · r̂)(βK − 1). (3.54)

Using (3.54), we can rewrite the Dirac equation (3.36) for spherically
symmetric potential in a form, suitable for solution in spherical polar
coordinates5.[

−i(α · r̂)

{
∂

∂r
− 1

r
(βK − 1)

}
+ βm+ V (r)

]
ψ(r) = Eψ(r). (3.55)

Since ψ(r) is also an eigenfunction of the operator K as shown in Eq.
(3.43), we can substitute its eigenvalue κ in Eq. (3.55).[

−i(α · r̂)

{
∂

∂r
− 1

r
(βκ− 1)

}
+ βm+ V (r)

]
ψ(r) = Eψ(r). (3.56)

5An alternative form for the Dirac Hamiltonian in spherical polar coordinates is
(vide Solved Problems 2.5 and 2.6.)

H = αrpr +
i

r
αrβK + βm+ V (r).

where αr and pr are radial components of α and p, defined by

αr =
1

r
(α · r), pr =

1

r
(r · p− i).
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Equation (3.56) is a matrix equation that can be written explicitly as[
m+ V (r) X1

X2 −m+ V (r)

] [
Φa(r)
Φb(r)

]
= E

[
Φa(r)
Φb(r)

]
. (3.57)

with

X1 = −i(σ · r̂)

{
∂

∂r
+

1

r
(κ+ 1)

}
; X2 = −i(σ · r̂)

{
∂

∂r
− 1

r
(κ− 1)

}
.

Equation (3.57) is obtained using the two-component form (3.47) for ψ(r)
and it leads to two coupled equations in Φa(r) and Φb(r). This coupling
is essentially due to the α · r̂ term in Eq. (3.55).

(E −m− V (r))Φa(r) = −i(σ · r̂)

{
∂

∂r
+

1

r
(κ+ 1)

}
Φb(r). (3.58)

(E +m− V (r))Φb(r) = −i(σ · r̂)

{
∂

∂r
− 1

r
(κ− 1)

}
Φa(r). (3.59)

3.3.2 Radial and Angular-spin functions

You may recall that in solving the Schrödinger equation for a spherically
symmetric potential, we were able to write down the wave function as a
product of radial function and spherical harmonics. That was possible
since the orbital angular momentum is a constant of motion in the non-
relativistic case. In the present problem, the orbital angular momentum
L is not conserved but only the total angular momentum J = L + S is
conserved. So, let us write down the state functions Φa(r) and Φb(r) as
a product of radial and angular-spin functions.

Φa(r) = Ra(r) Ωa
κa,j,m(θ, φ); (3.60)

Φb(r) = Rb(r) Ωb
κb,j,m

(θ, φ). (3.61)

For a given j, two orbital states la = j− 1
2 and lb = j+ 1

2 are possible and
one can construct two angular-spin functions Ωa

κa,j,m
= |la, 1

2 , j,m〉 and

Ωb
κb,j,m

= |lb, 1
2 , j,m〉.

Ωa
κa,j,m(θ, φ) =

[
la

1
2 j

m− 1
2

1
2 m

]
Y
m− 1

2
la

(θ, φ)χ
1
2
1
2

+

[
la

1
2 j

m+ 1
2 − 1

2 m

]
Y
m+ 1

2
la

(θ, φ)χ
− 1

2
1
2

, (3.62)
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Table 3.1: Clebsch-Gordan (C.G.) coefficients[
l 1

2 j
m1 m2 m

]
j m2 = 1

2 m2 = − 1
2

l + 1
2

(
l+m+ 1

2
2l+1

) 1
2

(
l−m+ 1

2
2l+1

) 1
2

l − 1
2 −

(
l−m+ 1

2
2l+1

) 1
2

(
l+m+ 1

2
2l+1

) 1
2

where the square brackets denote the C.G. coefficients6, Y m
l (θ, φ) denote

the spherical harmonics and χ the Pauli spin vectors.

χ
1
2
1
2

=

[
1
0

]
; χ

− 1
2

1
2

=

[
0
1

]
.

Using the algebraic expressions for the C.G. coefficients (vide Table 3.1),
we get

Ωa
κa,j,m =

(
la +m+ 1

2

2la + 1

)1/2

Y
m− 1

2
la

[
1
0

]
+

(
la −m+ 1

2

2la + 1

)1/2

Y
m+ 1

2
la

[
0
1

]

=


(
la+m+ 1

2
2la+1

)1/2

Y
m− 1

2
la(

la−m+ 1
2

2la+1

)1/2

Y
m+ 1

2
la

 . (3.63)

In a similar way, the other angular spin-function can be written as

Ωb
κb,j,m

=


−
(
lb−m+ 1

2
2lb+1

)1/2

Y
m− 1

2
lb(

lb+m+ 1
2

2lb+1

)1/2

Y
m+ 1

2
lb

 . (3.64)

6For a comprehensive discussion on Angular Momentum, the reader is referred to
”Angular Momentum Techniques in Quantum Mechanics” by V. Devanathan, Kluwer
Academic Publishers (1999).
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The parity of the two angular-spin functions are given by (−1)la and
(−1)lb , and so they are of opposite parity since |la − lb| = 1. It can be
easily verified (vide Solved Problem 2.5) that

σ · r̂Ωa
κa,j,m = −Ωb

κb,j,m
(3.65)

σ · r̂Ωb
κb,j,m

= −Ωa
κa,j,m (3.66)

The operator K has two eigenvalues κa and κb as given by Eq. (3.46).

κa,b = ∓(j + 1
2).

It is customary to take κa = −(j+ 1
2) and κb = +(j+ 1

2). It can be easily
verified that

κa = −(j + 1
2); j = `a + 1

2 ; κa = −(`a + 1). (3.67)

κb = +(j + 1
2); j = `b − 1

2 ; κb = `b. (3.68)

Note that |κa| = |κb| = |κ|.

3.3.3 Coupled Equations for Radial functions

It is remarkable that the pseudo-scalar operator σ · r̂ switches the one
angular-spin function to the other and thereby enables you to separate the
radial equations from the angular dependent quantities. In the coupled
equations (3.58) and (3.59), the pseudo-scalar operator σ ·r̂ does precisely
switch the angular-spin functions. Substituting (3.60) and (3.61) for Φa

and Φb and using Eqs. (3.65) and (3.66) in Eqs. (3.58) and (3.59) and
eliminating the same angular-spin functions that occur on both sides, we
obtain the following coupled equations for the radial functions Ra(r) and
Rb(r).

{E −m− V (r)}Ra(r) = i

{
∂

∂r
+

1

r
(κ+ 1)

}
Rb(r). (3.69)

{E +m− V (r)}Rb(r) = i

{
∂

∂r
− 1

r
(κ− 1)

}
Ra(r). (3.70)

Let us write the radial functions as[
Ra
Rb

]
=

[
(1/r)F (r)
(i/r)G(r)

]
, (3.71)
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where the phase factor i is introduced for the function G(r) to make the
radial equations for F (r) and G(r) explicitly real. Since

∂

∂r

(
F (r)

r

)
=

1

r

∂F (r)

∂r
− 1

r2
F (r); (3.72)

∂

∂r

(
G(r)

r

)
=

1

r

∂G(r)

∂r
− 1

r2
G(r); (3.73)

the coupled equations for radial functions F (r) and G(r) become

{E −m− V (r)}F (r) +
∂G

∂r
+
κ

r
G(r) = 0; (3.74)

{E +m− V (r)}G(r)− ∂F

∂r
+
κ

r
F (r) = 0. (3.75)

Let

a1 = m+ E, a2 = m− E, a =
√
a1a2 =

√
m2 − E2. (3.76)

and introduce a new variable

ρ = ar, such that
∂

∂ρ

∂ρ

∂r
= a

∂

∂ρ
. (3.77)

Let us rewrite the radial equations (3.74) and (3.75) in terms of the new
variable ρ. (

∂

∂ρ
+
κ

ρ

)
G(ρ)− 1

a
{a2 + V (r)}F (ρ) = 0; (3.78)(

∂

∂ρ
− κ

ρ

)
F (ρ)− 1

a
{a2 − V (r)}G(ρ) = 0. (3.79)

3.4 Hydrogen-like atom

For hydrogen-like atom, the electron experiences the Coulomb potential
due to the nucleus of charge Ze.

V (r) = −Ze
2

r
= −aZe

2

ρ
= −aΓ

ρ
, (3.80)

where Γ = Ze2 = Zα. The symbol α denotes the fine structure constant
(α = 1/137). For finding the energy levels of the hydrogen-like atom, we
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need to solve the radial equations with the above Coulomb potential.(
∂

∂ρ
+
κ

ρ

)
G(ρ)− 1

a

(
a2 −

aΓ

ρ

)
F (ρ) = 0; (3.81)(

∂

∂ρ
− κ

ρ

)
F (ρ)− 1

a

(
a1 +

aΓ

ρ

)
G(ρ) = 0. (3.82)

Since we are interested in the bound state solutions, the radial functions
should vanish at infinity. So, we shall choose the radial functions to be of
the form

G(ρ) = g(ρ)e−ρ; F (ρ) = f(ρ)e−ρ. (3.83)

Then

∂

∂ρ
G(ρ) =

∂

∂ρ
(g(ρ)e−ρ) =

(
∂g

∂ρ
− g
)
e−ρ = (g′ − g)e−ρ. (3.84)

Similarly,

∂

∂ρ
F (ρ) =

∂

∂ρ
(f(ρ)e−ρ) =

(
∂f

∂ρ
− f

)
e−ρ = (f ′ − f)e−ρ. (3.85)

The radial equations (3.81) and (3.82) in terms of f(ρ) and g(ρ) become

g′ − g +
κ

ρ
g −

(
a2

a
− Γ

ρ

)
f = 0; (3.86)

f ′ − f − κ

ρ
f −

(
a1

a
+

Γ

ρ

)
g = 0. (3.87)

3.4.1 Power series expansion for radial functions

We shall adopt the usual technique of power series expansion for f(ρ)
and g(ρ) and examine their behaviour for large ρ. If they diverge, then
the series should be terminated with a finite number of terms to satisfy
the asymptotic boundary condition of radial functions F (ρ) and G(ρ),
vanishing at large ρ.

Let us make the power series expansion for f(ρ) and g(ρ).

f(ρ) = ρs(b0 + b1ρ+ b2ρ
2 + · · · ) = ρs

∞∑
ν=0

bνρ
ν , b0 6= 0. (3.88)

g(ρ) = ρs(c0 + c1ρ+ c2ρ
2 + · · · ) = ρs

∞∑
ν=0

cνρ
ν , c0 6= 0. (3.89)
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Then

f ′(ρ) =
∞∑
ν=0

(s+ ν)bνρ
s+ν−1; (3.90)

g′(ρ) =

∞∑
ν=0

(s+ ν)cνρ
s+ν−1. (3.91)

Substituting the power series expansions (3.88) - (3.91) into Eqs.
(3.86) and (3.87), let us find the coefficient of the term ρs+ν−1.

(s+ ν + κ)cν − cν−1 −
a2

a
bν−1 + Γbν = 0; (3.92)

(s+ ν − κ)bν − bν−1 −
a1

a
cν−1 − Γcν = 0. (3.93)

Since the negative subscripts are not allowed for b and c, the substitution
ν = 0 in Eqs. (3.92) and (3.93) yield

(s+ κ)c0 + Γb0 = 0; (3.94)

(s− κ)b0 − Γc0 = 0; (3.95)

which can be written in the form of a matrix equation[
s− κ −Γ

Γ s+ κ

] [
b0
c0

]
= 0. (3.96)

Since b0 and c0 are not zero, to obtain a non-trivial solution, the condition
is that the determinant of the secular matrix should be zero.

s2 − κ2 + Γ2 = 0 or s = +
√
κ2 − Γ2, (3.97)

since s is a positive quantity. This implies that |κ| < Γ = Zα or Z < |κ|
α .

This means that there is no solution for one-electron (hydrogen-like) atom
if Z > 137, since the minimum value of |κ| = 1.

In order to eliminate the terms bν−1 and cν−1 from Eqs. (3.92) and
(3.93), multiply Eq. (3.92) by a1 and Eq. (3.93) by a and subtract.

a1(s+ ν + κ)cν − a1cν−1 −
a1a2

a
bν−1 + a1Γbν = 0; (3.98)

a(s+ ν − κ)bν − abν−1 − a1cν−1 − aΓcν = 0. (3.99)

Subtracting (3.99) from (3.98) and recalling that a1a2 = a2, we get

cν{a1(s+ ν + κ) + aΓ} = bν{a(s+ ν − κ)− a1Γ}. (3.100)
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For bound states, the radial wave functions must be finite near the origin
but should vanish for large r. If s ≥ 1, the wave function will be finite
near the origin. For larger r, the wave function will vanish only if F (r)
and G(r) are finite at large r. The behaviour at large r is determined
essentially by large ν. Omitting the other terms and retaining only the
ν-dependent terms, Eqs. (3.92) and (3.93) can be written as

νcν − cν−1 −
a2

a
bν−1 + Γbν = 0; (3.101)

νbν − bν−1 −
a1

a
cν−1 − Γcν = 0. (3.102)

For large ν, Eq. (3.100) yields a relation between the coefficients bν and
cν .

a1cν = abν . (3.103)

Using the relation (3.103) in Eqs. (3.101) and (3.102), we get

Γ =
νbν − 2bν−1

cν
=

2cν−1 − νcν
bν

. (3.104)

Equivalently

bν(νbν − 2bν−1) + cν(νcν − 2cν−1) = 0. (3.105)

Since the coefficients b and c are independent, the above relation is true
only if each term vanishes separately for large r.

bν →
2bν−1

ν
and cν →

2cν−1

ν
. (3.106)

Thus for large r,

b1 = 2b0 c1 = 2c0

b2 = 2b1
2 = 2b0 c2 = c1 = 2c0

b3 = 2b2
3 = 4

3b0 c3 = 2c2
3 = 4

3c0

b4 = 2b3
4 = 2

3b0 c4 = 2c3
4 = 2

3c0

(3.107)

Substituting these coefficients bν and cν in Eqs. (3.88) and (3.89), we
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obtain

f(ρ) = ρs
∞∑
ν=0

bνρ
ν

= ρsb0

{
1 + 2ρ+ 2ρ2 +

4

3
ρ3 +

2

3
ρ4 + · · ·

}
= ρsb0

{
1 + 2ρ+

1

2!
(2ρ)2 +

1

3!
(2ρ)3 +

1

4!
(2ρ)4 + · · ·

}
= b0ρ

se2ρ. (3.108)

Similarly,

g(ρ) = c0ρ
se2ρ. (3.109)

Since the series diverges as e2ρ, in order to obtain a well-behaved function,
the series has to be terminated or truncated at some value of ν, say ν = nr,
so that bnr+1 = cnr+1 = 0. From Eqs. (3.92) and (3.93), we obtain a
relationship between bnr and cnr by substituting ν − 1 = nr.

acnr = −a2bnr ; abnr = −a1cnr . (3.110)

Substituting ν = nr in Eq. (3.100), we get

cnr{a1(s+ nr + κ) + aΓ} = bnr{a(s+ nr − κ)− a1Γ}. (3.111)

By using the relation (3.110) in Eq. (3.111), the coefficients b and c are
eliminated and an expression for the energy levels of the hydrogen-like
atom is obtained.

(a1 − a2)Γ = 2a(s+ nr) or 2EΓ = 2a(s+ nr), (3.112)

since a1 = m+E and a2 = m−E. Also a2 = a1a2 = m2 −E2. Squaring
(3.112), we obtain

4E2Γ2 = 4a2(s+ nr)
2 = 4(m2 − E2)(s+ nr)

2;

E2 =
m2(s+ nr)

2

(s+ nr)2 + Γ2
=

m2

1 + Γ2

(s+nr)2

. (3.113)
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3.4.2 Energy levels

Taking the square root of (3.113), we obtain an expression for the energy
levels of hydrogen-like atom.

E = m

{
1 +

Γ2

(s+ nr)2

}− 1
2

. (3.114)

This is an exact relativistic expression for energy but an approximate ex-
pression in powers of α2 or Γ2 can be obtained using binomial expansion.

The symbol s is defined by Eq. (3.97).

s =
√
κ2 − Γ2 = |κ|

(
1− Γ2

κ2

) 1
2

≈ |κ|
(

1− Γ2

2κ2

)
.

s+ nr = |κ|+ nr −
Γ2

2|κ|
= n− Γ2

2|κ|
, (3.115)

where n = |κ|+ nr is the principal quantum number and nr is known as
the radial quantum number. The energy levels of the hydrogen-like atom
is given by

E = m

1 +
Γ2(

n− Γ2

2|κ|

)2


− 1

2

= m

1− 1

2

Γ2(
n− Γ2

2|κ|

)2 +
(− 1

2)(− 3
2)

2!

Γ4(
n− Γ2

2|κ|

)4 + · · ·


= m

{
1− Γ2

2n2

(
1− Γ2

2n|κ|

)−2

+
3Γ4

8n4

(
1− Γ2

2n|κ|

)−4

+ · · ·

}

= m

{
1− Γ2

2n2

(
1 +

Γ2

n|κ|

)
+

3Γ4

8n4
+ · · ·

}
= m

{
1− Γ2

2n2
− Γ4

2n4

(
n

|κ|
− 3

4

)
+ · · ·

}
. (3.116)

Let us examine the expression (3.116) obtained for the energy level in
natural units ~ = c = 1. The first term mc2 (when restored to C.G.S. or
M.K.S. units) denotes the rest energy of the electron, the second term the
non-relativistic Bohr energy and the third term corresponds to the fine
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structure effect depending on the quantum number κ. The energy depends
only on |κ| and not on its sign. Since κ can assume both positive and
negative values ±1,±2,±3, · · · , there is a degeneracy in the energy levels.
The following pairs of energy levels with the same |κ| are degenerate.

(2S1/2, 2P1/2), (3S1/2, 3P1/2), (3P3/2, 3D3/2), · · ·

The degenerate pairs of energy levels correspond to two eigenstates of
opposite parity corresponding to the same quantum numbers n and j.

The energy levels are given in Table 3.2 and depicted in Fig. 3.1. Be-
sides using the relativistic quantum numbers, n, κ, j,m, the energy levels
are also designated, by convention, by spectroscopic notation n{`}j , using
the non-relativistic concept of spin-orbit interaction.

Table 3.2: Low-lying energy levels of hydrogen atom, characterized by relativis-
tic quantum numbers n, κ, j. The conventional spectroscopic notation n{`}j is
also included.

n nr κ ` j
Spectroscopic Energy level
notation n{`}j Enκj

1 0 −1 0 1
2 1S 1

2
m
(

1− α2

2 −
α4

8

)
2 1 −1 0 1

2 2S 1
2

}
m
(

1− α2

8 −
5α4

128

)
1 +1 1 1

2 2P 1
2

0 −2 1 3
2 2P 3

2
m
(

1− α2

8 −
α4

128

)
3 2 −1 0 1

2 3S 1
2

}
m
(

1− α2

18 −
9α4

648

)
2 +1 1 1

2 3P 1
2

1 −2 1 3
2 3P 3

2

}
m
(

1− α2

18 −
3α4

648

)
1 +2 2 3

2 3D 3
2

0 −3 2 5
2 3D 5

2
m
(

1− α2

18 −
α4

648

)

From the Table 3.2, it can be observed that for the same n, there is a
splitting of energy levels due to different |κ| values and this is known as



3. The Dirac Equation with External Potentials 67

· · · · · ·

· · · · · ·
· · · · · ·

` = 0 ` = 1 ` = 2

2P1/2

2P3/2

3P1/2

3P3/2

3D3/2

3D5/2

1S1/2

2S1/2

3S1/2

(a) (b)

1S1/2

2S1/2

2P1/2

Lamb Shift

F = 1

F = 0
Hyperfine Splitting

2S1/2

2P1/2

··········

···········

∆E=5.9× 10−6 eV

∆E=4.372×10−6 eV

(1420 MHz)

(1057 MHz)

Figure 3.1: (a) Low-lying energy levels of hydrogen atom as per Dirac’s theory.
The S, P, D states corresponding to ` = 0, 1, 2 are shown laterally displaced for
the sake of clarity. One can observe the pairs of degenerate states with the same
j but different ` values. (b) The hyperfine splitting for 1S1/2 level and the Lamb
shift for 2S1/2 - 2P1/2 level are shown. The diagrams are not drawn to scale.

the fine structure splitting due to spin-orbit interaction.

E(2P3/2)− E(2P1/2) =
mα4

32
≈ 4.5× 10−5 eV.(ν = 10.9 GHz.) (3.117)

E(3P3/2)− E(3P1/2) =
mα4

108
≈ 1.33× 10−5 eV.(ν = 3.22 GHz.) (3.118)

E(3D5/2)− E(3D3/2) =
mα4

324
≈ 4.44× 10−6 eV.(ν = 1.075 GHz.)(3.119)

The experimental observations completely confirm the predictions of
Dirac’s theory and the fine structure of hydrogen spectral lines arising
from spin-orbit interaction. However, it is necessary to include the inter-
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action of electron and nuclear (proton) spins. This gives rise to hyperfine
structure of spectral lines, each energy level being split into two levels cor-
responding to the two possible total angular momentum states F that can
be obtained by coupling of j of electron with the proton spin in hydrogen
atom. The hyperfine splitting of 1S1/2 level is found to be ∆E = 5.9×10−6

eV that corresponds to a frequency of 1420 MHz. The hyperfine splitting
of energy level 1S1/2 into two is alone shown in Fig. 3.1(b) but such a
splitting occurs for each level. So, each level becomes a doublet due to
hyperfine interaction.

Further, in 1947, Lamb-Retherford7 found that the degeneracy of en-
ergy levels with the same n and j but differing ` is removed due to the
interaction of electrons with the fluctuations of the quantized radiation
field as envisaged in Quantum Field Theory. It is found that the 2S1/2

energy level is slightly higher than the 2P1/2 and this difference in energy
is known as the Lamb shift.

E(2S1/2)− E(2P1/2) = 4.372× 10−6 eV = 1057 MHz.

Both the hyperfine splitting and the Lamb shift have been measured
and are in perfect agreement with the theoretical calculations. This is
considered as one of the greatest triumphs of Quantum Electrodynamics.

Review Questions

3.1 Write down the Dirac equation for a charged particle in electromagnetic
field and show that its non-relativistic reduction automatically yields terms
which represent magnetic moment interaction with the correct gyromag-
netic ratio for the spin, spin-orbital interaction, Darwin term and Thomas
term, which have been studied earlier with non-relativistic Schrödinger
equation with the inclusion of Pauli spin term in an ad hoc manner.

3.2 Write down the Dirac equation for a central potential and show how you
can separate the radial and angular spin functions in the eigenstates to
obtain a set of two coupled radial wave equations.

3.3 Explain how you can solve the coupled radial wave equations obtained for
the Dirac equation with Coulomb potential with the bound state boundary
conditions and obtain the energy levels of hydrogen-like atom. Show that
the Dirac theory yields correctly the fine structure of spectral lines arising
from spin-orbit interaction.

3.4 It is found experimentally that the hydrogen spectrum shows not only the
fine structure predicted by Dirac’s theory but also a hyperfine structure.

7W. E. Lamb, Jr and R. C. Retherford, Phys. Rev., 72, 241(1957).
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Besides it is observed that the degeneracy of energy levels with the same
j but different ` as predicted by Dirac’s theory is not true and a small
splitting is observed. How will you account for these discrepancies?

Problems

3.1 Write down explicitly the operator K = β(σ · L + 1) in the matrix form
and show that it is Hermitian.

3.2 Show that the Dirac Hamiltonian H in a central potential commutes with
the following operators

K = β(σ ·L+ 1), and J = L+ S

and that the operators K and J commute among themselves.

3.3 Deduce the relation (3.52)

α · r̂ ×L = −i(α · r̂)(σ ·L).

3.4 Prove that
(α · r̂)2 = 1,

Using this relation, derive Eq. (3.54)

α · p = −i(α · r̂)

{
∂

∂r
− 1

r
(βK − 1)

}
.

3.5 Prove that the matrix element

Q = 〈lf 1
2jfmf |σ · r|li 1

2jimi〉 = −δjijf δmimf

and hence show that

σ · r|la 1
2jm〉 = −|lb 1

2jm〉;
σ · r|lb 1

2jm〉 = −|la 1
2jm〉;

if la = j − 1
2 and lb = j + 1

2 .

3.6 (a) Obtain the following relations:

(i) L2 = r2p2 − (r · p)2 + i~(r · p).
(ii) pr = 1

r (r · p− i~).

The symbols L, r, p, pr denote respectively, the orbital angular momen-
tum, position vector, momentum vector, radial component of momentum
in central field.
(b) Show that pr satisfies the commutation relation

[r, pr]− = i~.

(c) Prove that pr is a Hermitian operator.
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3.7 Given the Dirac Hamiltonian H = α · p+βm+V (r) in a central potential,
express it in the form

H = αrpr +
i

r
αrβK + βm+ V (r),

using the operators αr, pr,K, defined by

αr =
1

r
(α · r); pr =

1

r
(r · p− i); K = β(σ ·L+ 1).

Solutions to Problems

3.1 Let us write down explicitly the operator K in the matrix form.

K = β(σ ·L+ 1) =

[
1 0
0 −1

] [
σ ·L+ 1 0

0 σ ·L+ 1

]
=

[
σ ·L+ 1 0

0 −(σ ·L+ 1)

]
.

Let us now expand σ ·L and write it in the matrix form

σ ·L = σxLx + σyLy + σzLz

=

[
0 Lx
Lx 0

]
+

[
0 −iLy
iLy 0

]
+

[
Lz 0
0 −Lz

]
=

[
Lz Lx − iLy

Lx + iLy −Lz

]
.

It follows that K can be written as a 4× 4 matrix.

K =

[
σ ·L+ 1 0

0 −(σ ·L+ 1)

]

=


Lz + 1 Lx − iLy 0 0
Lx + iLy −Lz + 1 0 0

0 0 −Lz − 1 −Lz + iLy
0 0 −Lx − iLy Lz − 1

 .
The above matrix is Hermitian and hence K† = K.

3.2 The Dirac Hamiltonian H and the operator K are given by

H = α · p+ βm+ V (r); K = β(σ ·L+ 1).

To show that [H,K]− = 0

The potential V (r) does not involve any operator and so it commutes with
the operator K. The mass term also commutes with K since β2 = 1 and
[β,σ ·L]− = 0.

[β, β(σ ·L+ 1)]− = 0.
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Only we need to evaluate the commutator [α · p, K]−.

[α · p, βσ ·L]− = (α · p)β(σ ·L)− β(σ ·L)(α · p)

= −β(α · p)(σ ·L)− β(σ ·L)(α · p)

= −β {(α · p)(σ ·L) + (σ ·L)(α · p)} . (3.120)

(α · p)(σ ·L) =

[
0 σ · p

σ · p 0

] [
σ ·L 0

0 σ ·L

]
=

[
0 (σ · p)(σ ·L)

(σ · p)(σ ·L) 0

]
(3.121)

(σ ·L)(α · p) =

[
σ ·L 0

0 σ ·L

] [
0 σ · p

σ · p 0

]
=

[
0 (σ ·L)(σ · p)

(σ ·L)(σ · p) 0

]
(3.122)

Let us evaluate (σ · p)(σ ·L) and (σ ·L)(σ · p).

(σ · p)(σ ·L) = p ·L+ iσ · (p×L) (3.123)

(σ ·L)(σ · p) = L · p+ iσ · (L× p). (3.124)

Since L = r × p, the vector L is perpendicular to the plane containing r
and p. Hence

p ·L = L · p = 0.

The quantities σ · (p × L) and σ · (L × p) can be evaluated using the
commutation relations between the components of L and components of
p. In natural units (~ = c = 1),

[Lx, px]− = [Ly, py]− = [Lz, pz]− = 0. (3.125)

[Lx, py]− = ipz, [Ly, pz]− = ipx, [Lz, px]− = ipy. (3.126)

σ · (p×L) = σx(pyLz − pzLy) + σy(pzLx − pxLz) + σz(pxLy − pyLx)

σ · (L× p) = σx(Lypz − Lzpy) + σy(Lzpx − Lxpz) + σz(Lxpy − Lypx).

Adding, we get

σ · (p×L) + σ · (L× p) = σx {[Ly, pz]− − [Lz, py]−}
+σy {[Lz, px]− − [Lx, pz]−}
+σz {[Lx, py]− − [Ly, px]−}

= σx {ipx + ipx}+ σy {ipy + ipy}
+σz {ipz + ipz}

= 2iσ · p.
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Collecting he above results and substituting in Eq. (3.120), we get

[α · p, βσ ·L]− = −β {(α · p)(σ ·L) + (σ ·L)(α · p)}

= −
[

1 0
0 −1

] [
0 −2~σ · p

−2~σ · p 0

]
= 2~σ · p

[
0 1
−1 0

]
(3.127)

[α · p, β]− = α · pβ − βα · p
= −βα · p− βα · p
= −2βα · p

= −2

[
1 0
0 −1

] [
0 σ · p

σ · p 0

]
= −2

[
0 σ · p

−σ · p 0

]
. (3.128)

Equations (3.127) and (3.128) together yield zero for the commutator
[α · p,K]−.

To show that [J,K]−

Since J = L+ 1
2σ, we need to evaluate the commutator

[L+ 1
2σ, β(σ ·L+ 1)]−.

β commutes with both L and σ. So, we need to evaluate only the two
commutators

[L, βσ ·L]− and [1
2σ, βσ ·L]−.

Let us first evaluate the commutator [L, βσ ·L]−.

[L, βσ ·L]− = Lβσ ·L− βσ ·L
= β{L(σ ·L)− (σ ·L)L}. (3.129)

Let us expand L(σ ·L)− (σ ·L)L in terms of their components.

L(σ ·L)− (σ ·L)L

= (Lxex + Lyey + Lzez)(σxLx + σyLy + σzLz)

−(σxLx + σyLy + σzLz)(Lxex + Lyey + Lzez)

= (σxL
2
x + σyLxLy + σzLxLz − σxL2

x − σyLyLx − σzLzLx)ex

+(· · · )ey + (· · · )ez
= {σy[Lx, Ly]− + σz[Lx, Lz]−} ex + (· · · )ey + (· · · )ez
= i(σyLz − σzLy)ex + (· · · )ey + (· · · )ez
= i(σ ×L) (3.130)
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Thereby, we arrive at a compact expression for the commutator.

[L, βσ ·L]− = iβ(σ ×L). (3.131)

We shall now evaluate the other commutator .

[σ, βσ ·L]− = σβ(σ ·L)− β(σ ·L)σ

= β {σ(σ ·L)− (σ ·L)σ} . (3.132)

Using the relations

σ(σ ·L) = L− iσ ×L, (3.133)

(σ ·L)σ = L+ iσ ×L, (3.134)

we find

[σ, βσ ·L]− = −2iβ(σ ×L); [ 1
2σ, βσ ×L]− = −iβ(σ ×L).(3.135)

Thus the contribution from the commutator (3.131) is exactly canceled
by the commutator (3.135). Thereby we are assured that the operators
J and K commute, permitting us to find the simultaneous eigenfunctions
for both the operators.

3.3 It is simpler to prove the inverse relation.

−i(α · r̂)(σ ·L) = α · r̂ ×L.

−i(α · r̂)(σ ·L) = −i
[

0 σ · r̂
σ · r̂ 0

] [
σ ·L 0

0 σ ·L

]
= −i

[
0 (σ · r̂)(σ ·L)

(σ · r̂)(σ ·L) 0

]
= −i

[
0 iσ · r̂ ×L

iσ · r̂ ×L 0

]
= α · r̂ ×L.

The above result is obtained by using the relation

(σ · r̂)(σ ·L) = r̂ ·L+ iσ · r̂ ×L
= r̂ · r × p+ iσ · r̂ ×L
= iσ · r̂ ×L,

since r̂ · r × p = r̂ × r · p = 0.

3.4 Let us consider the operator (α · r̂)2.

(α · r̂)2 = (α · r̂)(α · r̂)

=

[
0 σ · r̂
σ · r̂ 0

] [
0 σ · r̂
σ · r̂ 0

]
=

[
(σ · r̂)(σ · r̂) 0

0 (σ · r̂)(σ · r̂)

]
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Since
(σ · r̂)(σ · r̂) = 1,

we find that (α · r̂)2 is a unit matrix. Hence α · p can be written as
(α · r̂)2(α · p). First let us find

(α · r̂)(α · p) =

[
0 σ · r̂
σ · r̂ 0

] [
0 σ · p

σ · p 0

]
=

[
(σ · r̂)(σ · p) 0

0 (σ · r̂)(σ · p)

]
We know that

(σ · r̂)(σ · p) = r̂ · p+ iσ · (r̂ × p) = r̂ · p+
i

r
(σ ·L)

Replacing σ ·L by the operator βK − 1, we find

(σ · r̂)(σ · p) = r̂ · p+
i

r
(βK − 1).

Since (α · r̂)2 = 1, we get

α · p = (α · r̂)2(α · p)

= (α · r̂)

{
r̂ · p+

i

r
(βK − 1)

}
= −i(α · r̂)

{
∂

∂r
− 1

r
(βK − 1)

}
,

since r̂ · p = −ir̂ ·∇ = −i ∂∂r .

3.5 Let us consider an operator Tk(1) · Tk(2), which is a scalar product of two
tensors, each of rank k. The matrix element of this operator, taken between
two coupled angular momentum states |j1, j2, j,m〉 and |j′1, j′2, j′,m′〉 is
given by

Q = 〈j′1j′2j′m′ |Tk(1) · Tk(2) | j1j2jm〉
=

∑
µ

(−1)µ〈j′1j′2jm |T
µ
k (1)T−µk (2) | j1j2jm〉. (3.136)

Since the operator is a scalar in the coupled angular momentum state,
j = j′ and m = m′.

Using the angular momentum algebra8, the matrix element can be written
as a product of two uncoupled angular momentum matrix elements, using
the U-coefficient or Racah coefficient.

Q = (−1)k
[j′2]

[j2]
U(j1kjj

′
2, j
′
1j2) 〈j′1 ||Tk(1) || j1〉〈j′2 ||Tk(2) || j2〉, (3.137)

8V. Devanathan, Angular Momentum Techniques in Quantum Mechanics, Kluwer
Academic Publishers (1999).
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where the U-coefficient is expressed in terms of the Racah coefficient

U(abcd, ef) = [e][f ]W (abcd, ef),

with the symbol [j] standing for (2j + 1)1/2.

With this brief introduction to the angular momentum algebra, let us
consider the evaluation of the matrix element

〈lf 1
2jfmf |σ · r̂|li 1

2jimi〉.

Since σ · r̂ is a scalar (strictly a pseudoscalar) in the combined space of
configuration and spin, jf should be equal to ji and mi = mf . So, let us
impose the condition ji = jf = j. Since the operator is a scalar, there will
be no dependence on the magnetic quantum number.

σ · r̂ =

√
4π

3
σ · Y1(r̂).

Applying the result (3.137), we obtain

〈lf 1
2 j ||σ · r̂ || li

1
2 j〉 = −U(li1j

1
2 , lf

1
2 ) 〈lf ||Y1 || li〉〈 12 ||σ ||

1
2 〉

= −[lf ][ 1
2 ]W (li1j

1
2 , lf

1
2 ) 〈lf ||Y1 || li〉〈 12 ||σ ||

1
2 〉,(3.138)

with

〈lf ||Y1 || li〉 =
[li][1]√
4π[lf ]

[
li 1 lf
0 0 0

]
,

〈 12 ||σ ||
1
2 〉 = [1].

Let us substitute the algebraic expressions for the W-coefficient and the
C.G. coefficient which are available in Tabular form9.

Case 1: li = j − 1
2 , lf = j + 1

2

W (lij1
1
2 ,

1
2 lf ) =

{
1

3(2j + 1)

} 1
2

;

[
li 1 lf
0 0 0

]
=

{
j + 1

2

2j

} 1
2

.

Substituting these values in Eq. (3.138), we get

〈lf 1
2 j ||σ · r̂ || li

1
2 j〉 = −1.

9V. Devanathan, Nuclear Physics, Appendices C & D, Narosa Publishing House,
New Delhi (2006).
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Case 2: li = j + 1
2 , lf = j − 1

2

W (lij1
1
2 ,

1
2 lf ) = −

{
1

3(2j + 1)

} 1
2

;

[
li 1 lf
0 0 0

]
= −

{
j + 1

2

2j + 2

} 1
2

.

Substituting these values in Eq. (3.138), we get

〈lf 1
2 j ||σ · r̂ || li

1
2 j〉 = −1.

Then, it follows that

σ · r̂|la 1
2jm〉 = −|lb 1

2jm〉;
σ · r̂|lb 1

2jm〉 = −|la 1
2jm〉.

The above result can be obtained from a simple consideration. Since σ · r̂
is a pseudo-scalar, its parity is −1. Therefore

lf = li ± 1.

In other words, if li = j + 1
2 , then lf = j − 1

2 or vice versa.

Since the square of the operator

(σ · r̂)(σ · r̂) = r̂ · r̂ + iσ · (r̂ × r̂) = 1,

it follows that
σ · r̂ = −1.

remembering that σ · r̂ is a pseudo-scalar.

3.6 (a) In Classical Mechanics,

L = r × p;

L2 = (r × p) · (r × p).

Using the vector algebra,

(A×B) · (C ×D) = (A ·C)(B ·D)− (A ·D)(B ·C),

we get

L2 = r2p2 − (r · p)2. (3.139)

Thus, we get

p2 =
1

r2
L2 + p2

r, (3.140)
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if pr ≡ 1
r (r · p) is defined in classical mechanics as the radial component

of momentum in central field.

In Quantum Mechanics, r and p do not commute. Using the commutation
relations between the conjugate variables,

[x, px]− = [y, py]− = [z, pz]− = i~,

we get an extra term i~(r · p).

L2 = r2p2 − (r · p)2 + i~(r · p). (3.141)

To derive Eq. (3.141)

Since L2 = (r × p) · (r × p), we get

L2
x = (ypz − zpy)(ypz − zpy)

= y2p2
z + z2p2

y − 2ypyzpz + i~(ypy + zpz), (3.142)

using the commutation relations between the conjugate variables. Simi-
larly we can find the other components.

L2
y = z2p2

x + x2p2
z − 2zpxxpx + i~(zpz + xpx); (3.143)

L2
z = x2p2

y + y2p2
x − 2xpxypy + i~(xpx + ypy). (3.144)

Adding, we get

L2 = L2
x + L2

y + L2
z

= x2(p2
x + p2

y + p2
z)− x2p2

x + y2(p2
x + p2

y + p2
z)− y2p2

y

+z2(p2
x + p2

y + p2
z)− z2p2

z − 2ypyzpz − 2zpzxpx − 2xpxypy

+2i~(xpx + ypy + zpz)

= r2p2 − (x2p2
x + y2p2

y + z2p2
z)− 2xpxypy − 2ypyzpz − 2zpzxpx

+2i~(r · p). (3.145)

In a similar way, we can find

(r · p)2 = (xpx + ypy + zpz)(xpx + ypy + zpz)

= x2p2
x + y2p2

y + z2p2
z − i~(r · p)

+2xpxypy + 2ypyzpz + 2zpzxpx. (3.146)

Using (3.146) in Eq. (3.145), we get Eq. (3.141).

L2 = r2p2 − (r · p)2 + i~(r · p).
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To deduce an expression for pr in Quantum Mechanics

The symbol pr denotes the radial component of momentum in a central
potential (spherically symmetric potential). So, it is convenient to work
in spherical coordinates. From Eq. (3.141), we obtain

p2 =
1

r2

{
L2 + (r · p)2 − i~r · p

}
=

1

r2

{
L2 − ~2

(
r
∂

∂r

)2

− ~2r
∂

∂r

}
,

=
1

r2
L2 − ~2

{
∂2

∂r2
+

2

r

∂

∂r

}
, (3.147)

since

r · p = −i~r ·∇ = −i~r ∂
∂r
,

and (
r
∂

∂r

)2

= r
∂

∂r

(
r
∂

∂r

)
= r

∂

∂r
+ r2 ∂

2

∂r2
.

Equation (3.147) can be written in a form similar to (3.140)

p2 =
1

r2
L2 + p2

r, (3.148)

if pr in quantum mechanics is defined as

pr =
1

r
(r · p− i~). (3.149)

Writing p as a differential operator, r · p = −i~r ·∇ = −i~r ∂∂r . It can be
easily verified that

pr = −i~
(
∂

∂r
+

1

r

)
, (3.150)

and

p2
r = −~2

(
∂

∂r
+

1

r

)(
∂

∂r
+

1

r

)
= −~2

{
∂2

∂r2
+

2

r

∂

∂r

}
. (3.151)

Substituting (3.151) into Eq. (3.148), we get back Eq. (3.147).

(b) It can be easily verified that r and pr obey the commutation relation

[r, pr]− = i~,
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using Eq. (3.150) for pr.

(c) It can be shown that pr as given by Eq. (3.150) is a Hermitian operator.
If Φ and Ψ are two arbitrary state vectors, the the condition for Hermiticity
of pr is ∫ ∞

0

dr r2Φ∗prΨ =

∫ ∞
0

dr r2(prΦ)∗Ψ. (3.152)

Let us consider separately the two terms occurring in Eq. (3.150) for pr.

First term:∫
dr r2Φ∗

(
−i~ ∂

∂r

)
Ψ = −i~r2Φ∗Ψ|∞0 −

∫
drΨ

(
−i~ ∂

∂r
r2Φ∗

)
.(3.153)

In Eq. (3.153), the first term vanishes when the limits are taken and the
second term alone survives and it is equal to

−
∫
dr r2

(
i~
∂

∂r
Φ

)∗
Ψ− 2

∫
dr r2

(
i~

1

r
Φ

)∗
Ψ. (3.154)

Second term:∫
dr r2Φ∗

(
−i~1

r

)
Ψ =

∫
dr r2

(
i~

1

r
Φ

)∗
Ψ. (3.155)

Adding the contributions from Eqs. (3.153) and (3.155), we establish the
Hermiticity condition (3.152).

3.7 Given the operators

αr =
1

r
(α · r); pr =

1

r
(r · p− i); K = β(σ ·L+ 1),

let us express (α · r)(α · p) in terms of them.

(α · r)(α · p) = r · p+ iσ · (r × p)

= (rpr + i) + iσ ·L, since pr =
1

r
(r · p− i)

= (rpr + i) + i(βK − 1), since β2 = 1

= rpr + iβK.

Alternatively, (α · r)(α · p) can be written as

(α · r)(α · p) = rαr(α · p).

So,

rαr(α · p) = rpr + iβK.
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Multiplying both sides by αr, we get

α · p = αrpr +
i

r
αrβK,

since

α2
r =

1

r2
(α · r)(α · r) =

1

r2
{r · r + iσ · (r × r)} = 1.

Using the above results, the Dirac Hamiltonian can be written as

H = αrpr +
i

r
αrβK + βm+ V (r).



Chapter 4

The Neutrino

The neutrino was first postulated by W. Pauli in 1930 in order to explain
the energy, momentum and angular momentum conservation in beta de-
cay. It is a charge-less, massless particle with spin - 1

2 which could not be
detected in the early β - decay experiments but conjectured to participate
in the reaction in order to preserve the conservation laws which are held
sacrosanct and form the main basis for all physical sciences. Pauli was
very apologetic for making this postulate and is supposed to have stated
”I have done a terrible thing. I have postulated a particle that cannot
be detected.” However, after 25 years, Frederic Reines and Clyde Lorrain
Cowan,Jr.1 succeeded, in the year 1956, in devising and performing an
experiment by which the neutrino was detected. Reines shared the Nobel
Prize in Physics awarded in 1995 along with M. L. Perl2 who discovered
the Tau lepton in 1975 at the Stanford Linear Accelerator Laboratory.

4.1 The Dirac equation for the neutrino

Since neutrino is a spin - 1
2 particle, it should obey the free particle Dirac

equation

(cα · p+ βmc2)ψ = Eψ, (4.1)

1F. Reines and C.L. Cowan,Jr.,”Measurement of free antineutrino absorption cross
section by protons”, Phys. Rev. 113, 273 (1959). F. Reines, ”Neutrino Interactions”,
Ann. Rev. Nucl. Sci. 10, 1 (1960).

2M. Perl et al, Phys. Rev. Lett. 35, 1489 (1975).
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for which the solutions are given by Eqs. (2.16) and (2.17) in chapter 2.

ψ1 = N


1
0
pz

W+µ
p+
W+µ

 ; ψ2 = N


0
1
p−
W+µ
−pz
W+µ

 ; (4.2)

ψ3 = N


−pz
W+µ
−p+
W+µ

1
0

 ; ψ4 = N


−p−
W+µ
pz

W+µ

0
1

 ; (4.3)

which are normalized such that

〈ψi|ψj〉 = ψ†iψj = δij , i, j = 1, 2, 3, 4.

The corresponding normalization factor N obtained is

N =

√
W + µ

2W
, where W = +(p2 + µ2)1/2, µ = mc.

The solutions ψ1 and ψ2 correspond to positive energy states E = +(p2c2+
m2c4)1/2 = +cW and the solutions ψ3 and ψ4 correspond to negative en-
ergy states with E = −cW .

If we assume the neutrino to be propagated along the z direction and
its rest mass to be zero, then µ = mc = 0, W = pz, p+ = p− = 0.
Substituting these values in Eqs. (4.2) and (4.3), we obtain the four
solutions of the Dirac equation for the neutrino.

ψ1 =
1√
2


1
0
1
0

 =
1√
2

[
χ+

χ+

]
, ψ2 =

1√
2


0
1
0
−1

 =
1√
2

[
χ−
−χ−

]
, (4.4)

ψ3 =
1√
2


−1

0
1
0

 =
1√
2

[
−χ+

χ+

]
, ψ4 =

1√
2


0
1
0
1

 =
1√
2

[
χ−
χ−

]
. (4.5)

In Eqs. (4.4) and (4.5), χ+ and χ− denote the two-component spinors

χ+ =

[
1
0

]
; χ− =

[
0
1

]
.
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The solutions (4.4) and (4.5) are obtained using the standard (Dirac)
representation for the Dirac matrices α and β.

α =

[
0 σ
σ 0

]
, β =

[
1 0
0 −1

]
. (4.6)

In addition, we can define the following gamma matrices.

γ0 = β, γ = βα =

[
0 σ
−σ 0

]
,

γ5 = γ0γxγyγz = −i
[

0 1
1 0

]
, γ′5 = iγ5 =

[
0 1
1 0

]
.

(4.7)

The states ψ1 and ψ2 correspond to positive energy and the states ψ3 and
ψ4 correspond to negative energy. It is found that the states ψ1, ψ2, ψ3, ψ4

are also the eigenfunctions of the chirality operator γ′5 and the helicity
operator σ · p̂.

γ′5ψ1 = +ψ1, eigenvalue of γ′5 : +1,
γ′5ψ2 = −ψ2, eigenvalue of γ′5 : −1,
γ′5ψ3 = −ψ3, eigenvalue of γ′5 : −1,
γ′5ψ4 = +ψ4, eigenvalue of γ′5 : +1.

(4.8)

σ · p̂ ψ1 = +ψ1, helicity : +1,
σ · p̂ ψ2 = −ψ2, helicity : −1,
σ · p̂ ψ3 = +ψ3, helicity : +1,
σ · p̂ ψ4 = −ψ4, helicity : −1.

(4.9)

Thus, we find two positive energy states, one
with positive helicity and the other with neg-
ative helicity. Similarly we have two negative
energy states, one with positive helicity and the
other with negative helicity. Experimentally, it
is found that we have only neutrinos with nega-
tive helicity and anti-neutrinos with positive he-
licity. In other words, the neutrino is found to
have its spin S oriented opposite to the direction
of its momentum p whereas the anti-neutrino
has its spin S oriented along the direction of its
momentum p, as shown in Fig. 4.1. This can
be realized by means of the projection operator
1
2(1− γ′5).

⇐=
S p

neutrino (ν)

=⇒
S p

anti-neutrino (ν̄)

Figure 4.1
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1
2(1− γ′5)ψ1 = 0, 1

2(1− γ′5)ψ2 = ψ2,

1
2(1− γ′5)ψ3 = ψ3,

1
2(1− γ′5)ψ4 = 0.

(4.10)

The projection operator picks out the left-handed neutrino (neutrino with
negative helicity) and right-handed anti-neutrino (anti-neutrino with pos-
itive helicity).

4.1.1 V−A form for the Weak interaction

In Fermi’s theory of beta decay,

n→ p+ e− + ν̄e,

the decay rate is given by the product of nucleonic and leptonic current.

jNµ j
`
µ = (ψ̃pγµψn)(ψ̃eγµψν̄).

The lepton current is of the form

j`µ = ψ̃eγµψν̄

=
1

2
ψ̃eγµ(1− γ′5)ψ3. (4.11)

The projection operator which eliminated the left-handed anti-neutrino
gives the vector–axial vector current form (vector γµ − Axial vector γµγ

′
5

form) for the beta decay interaction. Such a form was originally proposed
by Sudarshan and Marshak3 and by Feynman and Gell-Mann4. Here,
we find such a form emerges from the experimental observation that the
neutrinos are left-handed and the antineutrinos are right-handed.

In a similar way, we can modify the nucleonic current

jNµ = ψ̃pγµψn,

which is a pure vector current as given by Fermi, to include also the axial
vector part.

jNµ = ψ̃pγµ(1− γ′5)ψn, (4.12)

The matrix element for the beta decay is obtained by coupling of nucleonic
and leptonic current.

M =
GF√

2

{
ψ̃pγµ(1− γ′5)ψn

}{
ψ̃eγµ(1− γ′5)ψν̄

}
, (4.13)

where GF is the Fermi coupling constant.

3E.C.G. Sudarshan and R.E. Marshak, Phys. Rev. 109, 860 (1958).
4R.P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
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4.1.2 Weyl’s two-component theory of neutrino

If you assume the neutrino mass to be zero, then the Dirac equation (4.1)
for the neutrino becomes

cα · pψ = Eψ. (4.14)

The Dirac equation for a fermion with mass involves four anticommut-
ing Dirac matrices αx, αy, αz, β and to find a suitable representation for
them, we require a minimum of 4×4 dimensional matrices. In the case of
neutrino, since the mass term is absent, we have only three anticommut-
ing matrices and so they can be represented by the three Pauli matrices
σx, σy, σz of dimension 2× 2. So, the Dirac equation for the neutrino can
be written as

cσ · pφ = Eφ, (4.15)

where φ denotes a two-component wave function (spinor). Operating on
the left by σ ·p on both sides of the above equation and using the relation
(σ · p)(σ · p) = p2, we get

c p2 φ = Eσ · pφ = (E2/c)φ.

Equivalently
E2 = p2c2 or E = ±pc.

Substituting E = +pc and E = −pc, in turn in Eq. (4.15), we get

σ · p
p

φ+ = φ+; (4.16)

−σ · p
p

φ− = φ−. (4.17)

If we take the neutrino momentum to be along the z-direction, then φ+

and φ− correspond to the two helicity states χ+ and χ−.

χ+ =

[
1
0

]
; χ− =

[
0
1

]
.

Eqs. (4.16) and (4.17) can be physically interpreted to represent the
positive helicity state for the neutrino and negative helicity state for anti-
neutrino. But experimentally, it is found the other way. This should
cause no problem. We have chosen the three Pauli matrices σx, σy, σz as
the three anticommuting matrices in Eq. (4.15). Instead, we can choose
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−σx,−σy,−σz as the three anticommuting matrices and we can rewrite
Eq. (4.15) as

−cσ · pφ = Eφ, (4.18)

Since the sign is now reversed, we will obtain the correct helicity for the
neutrino and anti-neutrino as observed experimentally.

−σ · p
p

φ− = φ−; (4.19)

σ · p
p

φ+ = φ+. (4.20)

Eq. (4.19) represents the left-handed neutrino and Eq. (4.20) represents
the right-handed antineutrino.

Although the two-component theory for neutrino is quite sufficient, we
often study the interaction of neutrinos with other Fermions with mass,
which can be represented only by four-component wave functions. In
order to have a unified description in such cases, we need to introduce
an appropriate four-component (bispinor) wave function for the neutrino.
This can be done by using the Weyl representation for the Dirac matrices
α and β.

4.1.3 The Weyl representation for Dirac matrices

Let us consider the Dirac equation given by Eq. (4.1). The Dirac matrices
αx, αy, αz and β are anticommuting and each of which, when squared,
yields unity.

αiαj + αjαi = 2δij , αiβ + βαi = 2δαi,β, i, j = x, y, z.

It is possible to have more than one representation for the matrices, obey-
ing the above properties. In Eq. (4.7), we have one representation, known
as the Dirac representation which is also known as the standard represen-
tation. Here we shall use another representation, known as the Weyl or
the chiral representation.

αW =

[
σ 0
0 −σ

]
, βW = (γ0)W =

[
0 −1
−1 0

]
. (4.21)

One can go from the Dirac representation to the Weyl representation by
means of unitary transformation U .

U =
1√
2

[
1 1
−1 1

]
. (4.22)
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It can be easily verified that

αW = UαU †; βW = UβU †; (4.23)

where α and β without any suffix denote the Dirac matrices in the Dirac
or standard representation. It can also be checked that the matrices
γ(γx, γy, γz) are the same in both the Dirac and Weyl representation.

γ = βα = βWαW =

[
0 σ

−σ 0

]
. (4.24)

But the product of matrices γ′5 = iγ0γxγyγz is different in the two repre-
sentations.

Dirac representation : γ′5 =

[
0 1
1 0

]
(4.25)

Weyl representation :
(
γ′5
)
W

=

[
1 0
0 −1

]
(4.26)

In the Weyl representation, the Dirac equation (4.1) becomes{
c

[
σ · p 0

0 −σ · p

]
+

[
0 −mc2

−mc2 0

]}[
φ+

φ−

]
= E

[
φ+

φ−

]
,(4.27)

where the Dirac bi-spinor ψ is written in the two-component form, ψ =[
φ+

φ−

]
. Equation (4.27) leads to two coupled equations in φ+ and φ−.

cσ · pφ+ −mc2φ− = Eφ+ (4.28)

−cσ · pφ− −mc2φ+ = Eφ− (4.29)

If m = 0, the Dirac equation splits into two separate equations in two-
component spinors φ+ and φ−.

cσ · pφ+ = Eφ+,
−cσ · pφ− = Eφ−,

E = ±cp. (4.30)

E = +cp

σ · p
p

φ+ = φ+; (Right-handed neutrino) (4.31)

−σ · p
p

φ− = φ−. (Left-handed neutrino) (4.32)
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E = −cp

−σ · p
p

φ+ = φ+; (Left-handed antineutrino) (4.33)

σ · p
p

φ− = φ−; (Right-handed antineutrino) (4.34)

Since it is found experimentally that the neutrino is left-handed and the
antineutrino is right-handed, Eqs. (4.32) and (4.34) alone are valid equa-
tions. So, in the four-component formalism, we should device a method
by which the other two components vanish by using projection operators.
In the Weyl representation5, we have

γ = βα =

[
0 −1
−1 0

] [
σ 0
0 −σ

]
=

[
0 σ
−σ 0

]
(4.35)

γ′5 = iγ0γxγyγz =

[
1 0
0 −1

]
. (4.36)

If ψ is the four-component Dirac wave function for the mass zero particle,
then the neutrino and antineutrino wave functions ψ− and ψ+ can be
obtained using the projection operators 1

2(1− γ′5) and 1
2(1 + γ′5).

ψ− =
1

2
(1− γ′5)ψ =

[
0
φ−

]
. (4.37)

ψ+ =
1

2
(1 + γ′5)ψ =

[
φ+

0

]
. (4.38)

Also, it can be verified that γ′5
2 = 1 and

γ′5ψ− = −ψ−. (4.39)

γ′5ψ+ = ψ+. (4.40)

Hence, ψ− and ψ+ are the solutions of the Dirac equation for the par-
ticle with zero rest mass and they are the eigenfunctions of the Hamil-
tonian, the helicity operator and of γ′5. Thus, we have shown that the
two-component Weyl theory is equivalent to the four-component Dirac
theory for the neutrino, if we choose the Weyl representation for the Dirac
matrices α and β.

5For convenience of writing, we shall hereafter omit the suffix W for the matrices
with the implicit understanding that we are working in the Weyl representation.
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4.2 The Majorana neutrino

The Dirac theory of the electron suggested that for every particle, there
is an antiparticle. In some cases, the particle and its antiparticle are
identical as in the case of photon and π0 meson. Majorana suggested that
such an identity may exist in the case of neutrino too.

One goes from a particle to its antiparticle state by means of a charge
conjugation operator C = iγyγ0.

ψc(x, t) = Cγ0ψ
∗(x, t) = iγyγ0γ0ψ

∗(x, t)

= iγyψ
∗(x, t), since γ2

0 = 1

= i

[
0 σy
−σy 0

]
ψ∗(x, t). (4.41)

Let us write down explicitly the particle state and obtain its antiparticle
state by the application of the charge conjugation operator.

ψ =


φ1

φ2

φ3

φ4

 =

[
φ+

φ−

]
, (4.42)

where

φ+ =

[
φ1

φ2

]
; φ− =

[
φ3

φ4

]
.

The charge conjugated state ψc is

ψc = i

[
0 σy
−σy 0

] [
φ+

φ−

]∗
= i

[
σyφ

∗
−

−σyφ∗+

]
. (4.43)

Majorana’s proposal that the neutrino and the antineutrino are one and
the same amounts to ψc = ψ.

i

[
σyφ

∗
−

−σyφ∗+

]
=

[
φ+

φ−

]
. (4.44)

Writing Eq. (4.44) in the four component form, we obtain the condition
for the neutrino to be self-conjugate.

φ∗4
−φ∗3
−φ∗2
φ∗1

 =


φ1

φ2

φ3

φ4

 . (4.45)
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Thus we find the condition for ψ to be self-conjugate is φ1 = φ∗4 and
φ2 = −φ∗3. From an inspection of Eq. (4.44), we get the equivalent
condition φ+ = iσyφ

∗
− for ψ to be self-conjugate. Thus

ψ =

[
iσyφ

∗
−

φ−

]
=

[
φc
φ−

]
, (4.46)

where we have used a simplified notation φc for iσyφ
∗
−.

Now let us consider the four-component Dirac equation for the mass
zero particle in the Wyle representation.

cα · pψ = E ψ

c

[
σ · p 0

0 −σ · p

] [
φ+

φ−

]
= E

[
φ+

φ−

]
. (4.47)

This yields two independent equations.

cσ · pφ+ = E φ+. (4.48)

−cσ · pφ− = E φ−. (4.49)

If the neutrino is a Majorana particle, then φ+ = φc = iσyφ
∗
− and the

above two equations become

cσ · pφc = E φc; where φc = iσ2φ
∗
−. (4.50)

−cσ · pφ− = E φ−. (4.51)

In the present case, the two equations are not independent and one can
obtain Eq. (4.50) from (4.51). Let us start with Eq. (4.51) and take its
complex conjugate.

−c(σxpx + σypy + σzpz)
∗φ∗− = E φ∗−

−c(σxpx − σypy + σzpz)φ
∗
− = E φ∗−. (4.52)

In Eq. (4.52), σx, σz are real matrices and only σy is purely imaginary.
So, σ∗y = −σy. Multiplying on the left by iσy on both sides of Eq. (4.52),
and remembering that σy anticommutes with σx and σz, we get

−icσy(σxpx − σypy + σzpz)φ
∗
− = E (iσyφ

∗
−)

c(σxpx + σypy + σzpz)(iσyφ
∗
−) = E (iσyφ

∗
−)

c(σ · p)φc = E φc. (4.53)
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Eq. (4.53) is identical with Eq. (4.50) and we have shown that Eqs. (4.51)
and (4.50) are one and the same.

In the two-component theory, we had both left and right-handed neu-
trinos. Here we have only left-handed neutrino field φ− and the right-
handed neutrino field φc is obtained from φ−. What is the physical sig-
nificance of considering the neutrino as a Majorana particle?

If we consider the Dirac Lagrangian density L = ψ(iγµ∂µ−m)ψ, the
mass term involves ψψ. If ψψ vanishes, a Dirac particle cannot have any
mass.

It is always possible to express ψ as a sum of positive and negative
helicity states ψR and ψL, where ψR,L = 1

2(1± γ′5)ψ.

ψψ = (ψR + ψL)(ψR + ψL)

= ψRψR + ψLψL + ψRψL + ψLψR

= ψRψL + ψLψR, (4.54)

since ψRψR = ψLψL = 0, as shown below.

ψRψR =
1

4
{(1 + γ′5)ψ}†γ0{(1 + γ′5)ψ}

=
1

4
ψ†(1 + γ′5)γ0(1 + γ′5)ψ

=
1

4
ψ(1− γ′5)(1 + γ′5)ψ

= ψLψL = 0. (4.55)

In deducing the relation (4.55), we have used the following properties
of γ′5:

γ′5
†

= γ′5; γ′5γ0 = −γ0γ
′
5; γ′5

2
.

Thus, we find that a mass term for the Dirac field can be introduced
only if there are ψL and ψR chiral components. Since the right-handed
neutrinos do not exist, it is not possible for neutrinos to have Dirac mass.
In the case of Majorana neutrinos, with the self-conjugate field, the mass
term is given by

ψψ = ψ†γ0ψ =
[
−iφT−σy φT−

∗] [ 0 −1
−1 0

] [
iσyφ

∗
−

φ−

]
=

[
−iφT−σy φT−

∗] [ −φ−
−iσyφ∗−

]
= φT−(iσy)φ− + φT−

∗
(−iσy)φ∗−

= φT−(iσy)φ− + h.c., (4.56)
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since {
φT−(iσy)φ−

}†
= φ†−(iσy)

†(φT−)† = φT−
∗
(−iσy)φ∗−.

The above analysis clearly shows that it is really possible to have mass
for the single left-handed Majorana field φ−. Writing explicitly φ− as a

two-component spinor

[
φ3

φ4

]
, we find

φT−(iσy)φ− = φ3φ4 − φ4φ3. (4.57)

This implies that the components of the two-component spinor should be
anticomputing. Further, unlike the Dirac mass term ψψ which is invariant
under the global U(1) transformation, the Majorana mass term violates
the global U(1) symmetry, which is the lepton number in this case. The
electron which is a spin- 1

2 particle, carrying conserved U(1) charge cannot
be a Majorana particle.

4.3 Neutrinoless double beta decay

Now, the question arises whether neutrino is a Dirac particle with zero rest
mass or a Majorana particle with a possible rest mass. Is there a lepton
number conservation or not? It is pointed out that the experimental
observation of neutrinoless double beta decay (0νββ-decay)

(A,Z)→ (A,Z + 2) + e− + e−

will settle this issue. Schechter and Valle6 showed that the observation
of 0νββ-decay will ensure that the neutrinos are Majorana particles with
non-zero rest mass, regardless of the mechanism that causes it. Also it
will admit the violation of lepton number conservation.

We are all familiar with ordinary beta decay with the emission of single
electron and a single neutrino.

(A,Z)→ (A,Z + 1) + e− + ν̄e.

If the binding energy of (A,Z+1) nucleus is less than that of (A,Z) nucleus
but the binding energy of (A,Z+2) is greater than that of (A,Z), the single
beta decay is not energetically possible but allows the double beta decay.

6J. Schechter and J.W.F. Valle, Phys. Rev. D25, 295 (1982).
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Under such favourable conditions, it is possible to observe two-neutrino
double beta decay (2νββ - decay).

(A,Z)→ (A,Z + 2) + e− + e− + ν̄e + ν̄e.

For the first time, in 1987, such a two-neutrino double-beta decay was
observed by M. Moe and his collaborators7 with 82Se nucleus.

82Se→ 82Kr + e− + e− + ν̄e + ν̄e.

Subsequently, many more 2νββ were observed with other nuclei

48Ca, 76Ge, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 136Xe, 150Nd, 238U.

The half-life of the parent nuclei in 2νββ-decay is of the order of 1021

years.
If the neutrino is a Majorana particle (for which neutrino and anti-

neutrino are one and the same particle), it is possible that the neutrino
emitted by one nucleon is absorbed by another nucleon in the nucleus and
the neutrinoless double beta decay may occur.

There has been a claim8 of having observed the neutrinoless double
beta decay of 76Ge with a half-life T1/2 = 2.23+0.44

−0.31 × 1025 but it has not
yet been confirmed by others.

4.4 Three generations of leptons

The electron and the neutrino associated with it are called leptons. Sub-
sequently, it was found that they are heavier particles known as muon
(µ with mass 105 MeV/c2) and tau (τ with mass 1777 MeV/c2) particles
and their associated neutrinos (νµ, ντ ) which exhibit similar interaction
properties as electron and its neutrino (νe). Muons were first discovered
in cosmic ray experiments around the year 1936 by C. D. Anderson, S.
H. Neddermeyer and others and tau lepton was discovered in 1975 at the
Stanford Linear Accelerator laboratory by M. L. Perl. There are known
as three generations of leptons.

e−

νe

µ−

νµ

τ−

ντ

7S.R. Elliot, A.A. Hahn and M. Moe, Phys. Rev. Lett. 59, 2020 (1987).
8H.L. Harney, H.V. Klapdor-Kleingrothans, A. Dietz and I.V. Krivosheina, Mod.

Phys. Lett. A16, 2409 (2001); H.V. Klapdor-Kleingrothans and I.V. Krivosheina,
Mod. Phys. Lett. A21, 1547 (2006).
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The absence of decay modes of muon into electron and gamma ray

µ− 9 e− + γ, µ+ 9 e+ + γ,

although energetically possible and the absence of reactions

νe + n9 µ− + p, νµ + n9 e− + p,

necessitated the introduction of separate lepton numbers for each gen-
eration of leptons. This has been fully supported by the study of other
allowed reactions involving leptons.

n → p+ e− + ν̄e.

π− → µ− + ν̄µ.

µ− → e− + ν̄e + νµ.

νe + n → e− + p.

νµ + n → µ− + p.

Thus, each generation of leptons is given a separate lepton number
and it is found to be conserved in any interaction. This is incorporated in
the Standard Model of elementary particles, according to which there are
three different flavours of neutrino, each having zero rest mass. However,
it is now known that the neutrino may change its flavour and the rest
mass of the neutrino is not exactly zero but may be very small.

4.5 Neutrino oscillations

4.5.1 Experimental evidence

Neutrinos abound in nature. Thermo-nuclear reactions in the Sun produce
low energy electron neutrinos in thousands of billions. Cosmic ray showers
produce high energy electron and muon neutrinos in great measure. Man-
made accelerators and nuclear reactors produce neutrinos of all flavours.

Since neutrino is a neutral particle without any charge, it cannot be
observed directly but can only be detected indirectly by observing the
reaction partners in the weak interaction, in which it participates. In
nineteen fifties, Raymond Davis devised an ingenious experiment to detect
the neutrinos using the reaction

νe +37 Cl→ 37Ar + e−. (4.58)
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The Q-value for the reaction is 0.8 MeV and so the incident neutrino
should have an energy greater than 0.8 MeV for the reaction to occur.

Since Davis has used the nuclear reactor as the source of neutrinos,
he failed in his effort, since the nuclear reactor produced ν̄e rather than
νe. At the same time, Cowen and Reines used the reaction

ν̄e + p→ n+ e+

for detecting the neutrino through its interaction with proton and they
succeeded in their attempt by detecting the final products in the reaction
without any ambiguity. Reines was rewarded with the Nobel prize for this
achievement.

Solar neutrinos

Undaunted by the failure to detect the neutrinos from the reactors, Davis
and his collaborators continued their experiments with chlorine for the
next two decades using solar neutrinos. The Sun serves as a natural source
of electron neutrinos. Bahcal and his collaborators9 have developed a
theory known as the Standard Solar Model (SSM) using the thermonuclear
fusion reactions via the pp chain and the CNO cycle. This ultimately
results in the fusion reaction

4p→ 4He + 2e+ + 2νe + 26.7 MeV,

with a release of 26.7 MeV energy that serves as the source of solar energy.
From this, one can estimate correctly the number of electron neutrinos
received on the earth per second per sq. cm. There are about 7 × 109

neutrinos reaching the earth from the Sun per sq. cm. per sec. Most of
the electron neutrinos emitted by the Sun are of low energy less than 0.5
MeV. So, only the high energy neutrinos, which form a small portion of
the neutrino energy spectrum and come from the decay of Boron (8B →
8Be + e+ + νe), will trigger the reaction (4.58).

The Homestake Experiment

Davis used the Homestake gold mine in South Dakota (USA) for his solar
neutrino experiments. A large tank containing 615 tons of fluid, rich in
chlorine, called tetra-chloroethylene was used and the radioactive Argon
atoms produced in the reaction (4.58) were extracted periodically from

9J.N. Bahcall, Neutrino Astrophysics, Cambridge University Press (1989).
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the tank by a special technique. Since the neutrinos are weakly interacting
particles, they produced argon atoms at a very slow rate of one argon atom
per day. Every month the 36Ar atoms were collected and counted. Instead
of 30 atoms expected from the SSM calculations, only 10 were actually
observed10. In other words, only one third of the expected number of
neutrinos were counted in the experiment. This has come to be known as
the Solar neutrino puzzle.

The Kamiokande Experiment

After almost two decades, the deficiency in the solar neutrino count re-
ported by the Homestack experiment, received an important confirmation
from the Japanese Kamiokande experiment11, led by Masatoshi Koshiba
and his team. The Kamiokande experiment observed only 40 % of the
expected solar neutrinos from the Sun.

The Kamiokande detector consisted of about 2 Kilotons of pure wa-
ter, surrounded by an array of 1000 photomultiplier tubes. The solar
neutrino undergoes scattering with an electron in the water molecule and
the ejected high energy electron is detected by Cherenkov radiation it
emits.

νe + e− → νe + e−.

The energy threshold of Kamiokande detector is about 7 MeV and so
only the high energy part of the Boron-8 spectrum was observed. The de-
ficiency observed in the solar neutrino count supported the solar-neutrino
puzzle reported earlier by the Homestack experiment. There is a distinct
difference between the two experiments. The Homestack experiment used
a passive radioactive chemical method for detection of events whereas the
Kamiokande experiment used an active method of registering the time at
which the event took place and also the direction from which the neu-
trino came; thereby assuring that it came from the Sun. Thus the solar
neutrino puzzle, first reported by the Homestack experiment was cor-
roborated by the Kamiokande experiment. Both Raymond Davis and
Masatoshi Koshiba were awarded the Nobel Prize in the year 2002 for
having established a new field of research known as neutrino astronomy
which is of great importance to elementary particle physics, astrophysics
and cosmology.

10R. Davis, D.S. Harmer and K.C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).
11Kamiokande Collaboration: K.S. Hirata et al, Phys. Rev. Lett. 63, 16 (1989);

Phys. Lett. B280, 146 (1992).
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The Sudbury Neutrino Observatory

Since the Standard Solar Model is found to be on a solid foundation and
the deficiency in the count of electron neutrinos is also corroborated by
other experimenters, the only option is to speculate a flavour change of
electron neutrino to muon neutrino or tau neutrino during its flight from
the Sun. The experiments done so far could not detect the neutrinos
of other flavours. The Sudbury Neutrino observatory (SNO) located in a
nickel mine in Ontario in Canada was designed to observe the neutrinos of
all flavours in order to establish convincingly the phenomenon of neutrino
oscillations.

In SNO, about 1000 tons of heavy water was used in a transparent
sphere surrounded by 9,500 photomultiplier tubes. A neutrino interacting
with the deuterium in the heavy water can induce the following two types
of interactions - charged current and neutral current weak interactions.

νe + d → p+ p+ e− charged current (CC) (4.59)

νx + d → p+ n+ νx, x = e, µ, τ neutral current (NC) (4.60)

The energy threshold for these reactions is a few MeV and so only the
solar neutrinos that come from 8B decay can only drive the aforesaid
reactions. Only the electron neutrinos can induce the charged current
reaction and the energetic electron that is produced in the CC reaction
can be detected by the Cerenkov radiation that it emits. The muon
neutrinos and tau neutrinos cannot induce CC reactions since the solar
neutrinos do not have sufficient energy to produce their partners µ and
τ . On the other hand, the NC reaction can be induced by neutrinos of all
flavours. The results12 of the CC reaction rate are in perfect agreement
with the Homestack and Kamiokande experiments that only one third of
the solar electron neutrinos are reaching the earth without any change of
flavour. On the other hand, the NC reaction rate coincides with the rate
predicted by Standard Solar Model of Bahcall. This can be considered as
a clear evidence that two third of the electron neutrinos emitted by the
Sun have changed their flavour during their passage to the earth.

Atmospheric neutrinos

Just as the Sun acts as a rich source of electron neutrinos of low energy,
cosmic rays offer as a rich source of high energy electron and muon neu-
trinos. Cosmic rays consist mostly of high energy protons which collide

12SNO Collaboration: Q.R. Ahmad et al, Phys. Rev. Lett. 87, 071301 (2001).
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with atmospheric atoms to produce pions and muons which in turn de-
cay releasing high energy electron and muon neutrinos and antineutrinos.
These are known as atmospheric neutrinos and they are in the energy
range of GeV.

π− → µ− + ν̄µ; π+ → µ+ + νµ

µ− → e− + ν̄e + νµ; µ+ → e+ + νe + ν̄µ

The ratio R of the number of atmospheric muon neutrinos to the number
of electron neutrinos is two.

R =
νµ + ν̄µ
νe + ν̄e

= 2. (4.61)

The experiments do not distinguish between the events caused by neu-
trinos and antineutrinos but differentiate between the events initiated by
neutrinos of different flavours. So, in the discussion that follows, neutri-
nos include antineutrinos also. Besides the experiments have directional
facility. They can count separately the number of neutrinos that come
from above and also those that come from below.

The Super-Kamiokande Experiment

The Japanese group working in Super-Kamiokande detector laboratory,
located at a depth of 1000 meters below the ground level in a zinc mine,
about 250 Km away from Tokyo in the north west direction, observed the
electron and muon neutrinos that were produced by cosmic rays interact-
ing with earth’s atmosphere. It was found that the ratio R = 2 for the
neutrinos that came from above but this ratio R got reduced to one for
the neutrinos that came from below. A detailed analysis revealed that
the number of electron neutrinos that came from below was almost the
same as the number of electron neutrinos that came from above but the
number of muon neutrinos that came from below was much less than the
number of muon neutrinos that came from above. These results are quite
perplexing. Why in the case of atmospheric electron neutrinos, there is no
depletion but in the case of muon neutrinos, there is a depletion? Why,
in the case of solar electron neutrinos, a depletion in the count was ob-
served in solar experiments but there is no such depletion in the case of
atmospheric electron neutrinos? You will find the answers in the solved
problems 4.4, 4.5 and 4.6.

The muon neutrinos that came from below had to travel through the
earth (earth’s diameter = 12,742 Km) before reaching the detector. Dur-
ing this passage through the earth, some of the muon neutrinos might
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Detectorneutrinos
from above

neutrinos
from below

Earth

Figure 4.2: Neutrinos from below should travel a distance of 12,742 Km (diam-
eter of the earth) before reaching the detector.

have changed into tau neutrinos and, as a consequence, the neutrino de-
tector which could only detect muon neutrinos showed less count for the
neutrinos that came from below when compared to the detector count for
the neutrinos that came from above13. This was in the year 1998.

This is a clear evidence that the neutrinos, as they travel large dis-
tances change from one flavour to another and this has come to be known
as neutrino oscillations. This is not possible if the neutrinos are massless.
So, it is conjectured that the neutrinos carry a small mass. This neu-
trino oscillation was corroborated later in the year 2001 by the Sudbury
Neutrino Observatory (SNO), located in Canada, using solar neutrinos.

The chief physicists Takaaki Kajita and Arther B. McDonald of these
two large research groups - Super Kamiokande Collaboration and Sudbury
Neutrino Observatory - were awarded the Nobel Prize in Physics for the
year 2015.

4.5.2 Theoretical analysis

Neutrino is produced in weak interaction along with a charged lepton or
is absorbed to produce a charged lepton. Since there are three types of
charged leptons, electron, muon and tau, the neutrino, by definition, is
a flovour eigenstate. The neutrino that is associated with electron is the
electron neutrino, that associated with muon is the muon neutrino and
that associated with tau is the tau neutrino.

Let us try to estimate the depletion of electron neutrinos during the

13Super-Kamiokande Collaboration: Y. Fukuda et al, Phys. Rev. Lett. 81, 1562
(1998).
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flight from the Sun by conversion to muon neutrinos and tau neutrinos. If
the neutrinos have a mass, however small it may be, then we can define two
sets of eigenstates, mass eigenstates |ν1〉, |ν2〉, ν3〉 and weak interaction
eigenstates |νe〉, |νµ〉, ντ 〉. Let us assume that one can go from one set of
eigenstates |νi〉 to the other set |νw〉 by unitary transformation.

|νw〉 =

3∑
i=1

Uwi|νi〉, w = e, µ, τ (4.62)

where Uwi is the unitary transformation operator that obeys the following
normalization conditions.∑

w

UiwU
∗
jw = δij ;

∑
i

UwiU
∗
w′i = δww′ . (4.63)

Let us assume that H is diagonal in the |νi〉 basis, such that

H(p)|νi〉 = Ei|νi〉, (4.64)

where

Ei =
(
p2c2 +m2

i c
4
) 1

2 ≈ pc
{

1 +
m2
i c

2

p2

} 1
2

≈ pc+
1

2

m2
i c

3

p
. (4.65)

Let us now consider the time evolution of the mass eigenstate.

|νi(t)〉 = e−iEit/~|νi(0)〉 = e−iEit/~|νi〉. (4.66)

The time evolution of the weak interaction eigenstate can be obtained
from eq. (4.62).

|νw(t)〉 =
3∑
i=1

Uwi e
−iEit/~|νi〉, w = e, µ, τ. (4.67)

Now, we can write down the amplitude for the weak interaction amplitude
|νw(t)〉 at time t to contain the weak interaction eigenstate |νw′〉.

〈νw′ |νw(t)〉 =

3∑
i=1

Uwi e
−iEit/~〈νw′ |νi〉

=

3∑
i=1

Uwi e
−iEit/~

∑
j

〈Uw′j νj |νi〉

=
3∑
i=1

Uwi e
−iEit/~U∗w′i. (4.68)
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The last step is obtained using the orthonormality condition of the mass
eigenstates 〈νj |νi〉 = δij .

From Eq. (4.68), we obtain the probability Pw′w of finding the neu-
trino of type w′ after time t.

Pw′w = |〈νw′ |νw(t)〉|2

=

(
3∑
i=1

Uwi e
−iEit/~U∗w′i

) 3∑
j=1

Uwj e
−iEjt/~U∗w′j

∗

=
∑
i,j

(UwiU
∗
w′i)

(
U∗wjUw′j

){
e−i(Ei−Ej)t/~ − 1 + 1

}
= δw′w +

∑
i,j

UwiU
∗
w′iU

∗
wjUw′j

{
e−i(Ei−Ej)t/~ − 1

}
. (4.69)

Since the summation is over dummy indices i and j, you are free to
exchange them and include another term with i and j exchanged.

Pw′w = δw′w +
1

2

∑
i,j

[
UwiU

∗
w′iU

∗
wjUw′j

{
e−i(Ei−Ej)t/~ − 1

}
+ UwjU

∗
w′jU

∗
wiUw′i

{
e−i(Ej−Ei)t/~ − 1

}]
. (4.70)

If U is complex, then it is possible to write14

UwiU
∗
w′iU

∗
wjUw′j = |UwiU∗w′iU∗wjUw′j |eiφ, (4.71)

where φ is the overall phase factor. The exchange term is the complex
conjugate of (4.71).

U∗wiUw′iUwjU
∗
w′j = |UwiU∗w′iU∗wjUw′j |e−iφ, (4.72)

14R. Parthasarathy, Relativistic Quantum Mechanics, Narosa Publishing House, New
Delhi (2010).
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Substituting (4.71) and (4.72) into Eq. (4.70), we get

Pw′w = δw′w +
1

2

∑
i,j

[
|UwiU∗w′iU∗wjUw′j |eiφ

{
e−i(Ei−Ej)t/~ − 1

}
+ |UwiU∗w′iU∗wjUw′j |e−iφ

{
ei(Ei−Ej)t/~ − 1

}]
= δw′w +

1

2

∑
i,j

|UwiU∗w′iU∗wjUw′j |

×
{
e−i{(Ei−Ej)t/~−φ} − eiφ + ei{(Ei−Ej)t/~−φ} − e−iφ

}
= δw′w +

1

2

∑
i,j

|UwiU∗w′iU∗wjUw′j |

×
{(

2 cos
(Ei − Ej)t

~
− φ

)
− 2 cosφ

}
. (4.73)

Let us, for simplicity, assume that U is real. Then φ = 0 and Eq.(4.73)
reduces to

Pw′w = δw′w +
∑
i,j

UwiUw′iUwjUw′j

{
−2 sin2 (Ei − Ej)t

2~

}
. (4.74)

The quantity within the curly bracket in Eq. (4.74) can be expressed in
terms of the neutrino masses using Eq. (4.65).

Ei − Ej =

(
pc+

1

2

m2
i c

3

p

)
−

(
pc+

1

2

m2
jc

3

p

)
=

1

2p
(m2

i −m2
j )c

3. (4.75)

If L is the distance travelled by the neutrino, then the time taken for the
neutrino to cover this distance t ≈ L/c. Thus,

(Ei − Ej)t
~

=
(Ei − Ej)L

c~
=

(m2
i −m2

j )c
3L

2pc~
=

(m2
i −m2

j )c
3L

2Eν~
, (4.76)

where we have substituted pc by Eν , since the neutrino mass is negligible.
The quantity within the curly bracket in Eq. (4.74) can now be ex-

pressed as

{· · · } = −2 sin2 (Ei − Ej)t
2~

= −2 sin2 πL

λij
, (4.77)
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where

λij =
4π(~c)Eν

(m2
i −m2

j )c
4
. (4.78)

Substituting (4.77) into Eq. (4.74), we obtain the probability of neutrino
oscillation from flavour w to flavour w′ for a distance of travel L.

Pw′w = δw′w − 2
∑
i,j

UwiUw′iUwjUw′j sin2

(
πL

λij

)

= δw′w − 4
∑
i<j

UwiUw′iUwjUw′j sin2

(
πL

λij

)
. (4.79)

The oscillation is permissible only if the mass eigenstates are non-degenerate
(mi 6= mj). By substituting the values of the physical constants:

~ = 1.055× 10−34 Js; c = 2.998× 108 m/s; 1 eV = 1.602× 10−19 J.

the oscillation length parameter λij and its dependence on the neutrino
energy and their mass differences can be explicitly given.

~c = 1.055× 2.998× 10−26 Jm

=
1.055× 2.998× 10−26

1.602× 10−19
= 1.9743× 10−7 eV m.

λij =
4π(1.9743× 10−7)Eν

(m2
i −m2

j )c
4

=
4π(1.9743× 10−1)

(m2
i −m2

j )c
4

(
Eν
106

)
= 2.481

(
Eν

MeV

)
(eV)2

(m2
i −m2

j )
. (4.80)

In Eq. (4.80), Eν is to be expressed in MeV and masses mi and mj are
to be given in eV.

Oscillations between two flavours

For the sake of simplicity, let us restrict our considerations to electron
neutrino (νe) and muon neutrino (νµ) and the oscillations between these
two flavours only. Since the mass eigenstates and the weak interaction
eigenstates are connected by unitary transformation, we can consider the
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unitary transformation as a rotation through an angle θ in two dimen-
sional space xy about z axis. Accordingly, we have[

νe
νµ

]
=

[
cos θ sin θ
− sin θ cos θ

] [
ν1

ν2

]
. (4.81)

The elements of the unitary matrix are:

Ue1 = cos θ, Ue2 = sin θ, Uµ1 = − sin θ, Uµ2 = cos θ,

where the angle θ is known as the mixing angle. Substituting these values
in Eq. (4.79), we get

Pµe = −4Ue1Uµ1Ue2Uµ2 sin2

(
πL

λ12

)
= 4 cos2 θ sin2 θ sin2

(
πL

λ12

)
= sin2(2θ) sin2

(
πL

λ12

)
. (4.82)

Pee = 1− sin2(2θ) sin2

(
πL

λ12

)
. (4.83)

Equation (4.82) gives the probability of conversion of νe to νµ during its
flight over a distance L. Since it is a sinusoidal function of the distance
of travel from the source to the detector, this phenomenon is referred
to as neutrino oscillations. Eq. (4.83) gives the probability of reaching
the destination without changing its flavour. Substituting the expression
(4.80) for λ12 in Eq. (4.82) and noting that π/2.481 = 1.267, we can
rewrite Eq. (4.82) as

Pµe = sin2(2θ) sin2
(
1.267 ∆m2 L/Eν

)
, (4.84)

where ∆m2 = m2
2 −m2

1.
Let us now discuss the physics behind Eq. (4.82) in the context of the

solar neutrino puzzle. The mixing angle θ is estimated to be about 30o.

θ = 30o. Therefore sin2(2θ) =
3

4
.

The oscillatory term sin2
(
πL
λ12

)
can assume any value between 0 and 1,

depending on L,Eν and ∆m2 = m2
2 − m2

1. The neutrino energy Eν is
not precise but has a spread of values, depending upon the detector that
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is used to detect the neutrinos. The distance of the neutrino detector
from the source is not also a constant since the earth is rotating on its
own axis while describing an elliptical orbit around the Sun15. Since the
events take place at a very slow rate, the data has to be collected over an
extended period of time. So, it is difficult to assess exactly the value of

sin2
(
πL
λ12

)
. If sin2

(
πL
λ12

)
≈ 8/9, then

Pµe ≈
3

4
× 8

9
=

2

3
. or Pee ≈

1

3
.

This is just an approximate value which is in agreement with the obser-
vation of the solar neutrino experiments that only one third of the solar
neutrinos (νe) emitted by the Sun retains the same flavour, the rest getting
transformed into muon neutrinos.

In the case of high energy atmospheric neutrinos, the results of Super-
Kamiokande experiment can be similarly interpreted by assuming the
neutrino oscillation from νµ to ντ . The high energy electron neutrinos do
not change its flavour, since its oscillation length is far greater than the
diameter of the earth. So, the number of high energy electron neutrinos
that come from above is equal to the number of those that come from
below after travelling through the earth. (vide Problems 4.5 and 4.6.)

Oscillations between three flavours

The above restricted analysis of neutrino oscillations between two flavours
is quite sufficient to explain the observations made on the solar neutrinos
in Sudbury neutrino observatory and on the atmospheric neutrinos made
in the Super-Kamiokande Collaboration. For the study of solar neutrinos,
one can consider the oscillation of electron neutrinos into muon neutrinos.
For the study of atmospheric neutrinos, one may consider the oscillation
of νµ to ντ . One can gain a preliminary knowledge by restricting the study
to neutrino oscillations between two flavours. But for a detailed study,
one has to consider neutrino oscillations between all the three flavours16.

The unitary transformation matrix between three flavours is given
by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) and it is known as the

15Distance of the earth from Sun at perihelion = 1.47× 1011 m.
Distance of the earth from Sun at aphelion = 1.52× 1011 m.
Mean distance of the earth from Sun = 1.497× 1011 m.

16M. Narayan, M.V.N. Murthy, G. Rajasekaran and S. Uma Sankar, Phys. Rev.,
D53, 2809 (1996); M. Narayan, G. Rajasekaran and S. Uma Sankar, Phys. Rev., D56,
437 (1997); D. Indhumathi, M.V.N. Murthy, G. Rajasekaran, Nita Sinha, Phys. Rev.,
D74, 53004 (2006).
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neutrino mixing matrix UPMNS .

UPMNS = R23R13R12, (4.85)

where R23, R13, R12 denote the three rotations about the axis 1,2 and 3
respectively.

R23 =

 1 0 0
0 c23 s23

0 −s23 c23

 , R13 =

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 ,
R12 =

 c12 s12 0
−s12 c12 0

0 0 1

 , (4.86)

where

cij = cos θij , sij = sin θij . (4.87)

The angles θ12, θ13, θ23 are the three mixing angles and δ is the CP vio-
lating phase17. Thus we get

UPMNS = c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12c23s13e
iδ −c23s12s13e

iδ − c12s23 c13c23

 . (4.88)

From a large number of experiments, so far conducted, the following
values for the mixing angles and the mass-square differences have been
obtained:

θ12 = 35o, θ23 = 45o, θ13 < 10o.

∆2
12 = 7.6× 10−5 eV2, ∆2

23 = 2.4× 10−3 eV2, δCP = 0.

Since the neutrino oscillations depend only on the mass square differences,
it is not possible to obtain their absolute values. One can choose the
normal hierarchy

m3 > m2 > m1

or the inverted hierarchy

m2 > m1 > m3

for the masses. At present, there is no compelling reason to favour one
hierarchy or the other.

17Kobayashi and Maskawa has suggested that the dimension of the unitary matrix
has to be atleast 3 for a phase to exist. It is the CP violating phase which signals
the matter-antimatter asymmetric universe that is of great cosmological importance.
Kobayashi and Maskawa were awarded the Nobel Prize in the year 2008.
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4.6 Neutrino tomography

Neutrino oscillations occur due to a difference in phase that occurs be-
tween the wave-packets, representing the mass eigenstates. This phase
difference occurs because each wave-packet propagates with different ve-
locity due to the mass differences. This is what happens in the vacuum.
In matter, however, the phase difference is determined by the total energy
of the mass eigenstate. If the neutrino is propagating in a potential, V ,
then the total energy of a state is E + V . If the potential is different for
different neutrino flavours, then the phase difference depends also on the
interaction potential. Thus the neutrino oscillation depends on the matter
through which it propagates. This is known as the Mikheyev-Smirnov-
Wolfenstein (MSW) effect.

Since neutrinos can travel huge distances without being absorbed,
they can be used to probe the interior of earth and the density profile
of other bulk matters by observing the flavour composition of the emerg-
ing beam of neutrinos. This opens up the possibility of developing a
powerful method of probe known as Neutrino Tomography.

4.7 India-based neutrino observatory

India has been one of the pioneers in neutrino physics. The very first
detection of atmospheric neutrinos was made in the Kolar Gold Field
(KGF) mines in South India in 1965. These are the neutrinos produced
in the upper atmosphere by cosmic rays and hence are called atmospheric
neutrinos. The KGF laboratory was closed in 1992 because of the closure
of the KGF mines.

Much has happened during this period and later elsewhere - notably
in USA, Canada and Japan - by setting up dedicated laboratories for
neutrino research. The discovery of neutrino oscillations and their confir-
mation received Nobel prizes in the years 2002 and 2015. The Standard
Model of elementary particles, which has been very successful in describing
almost all the known phenomena hitherto, envisages massless neutrinos
but the discovery of neutrino oscillations requires to endow the neutri-
nos with mass, although small. This necessitates to look for a theory
beyond the Standard Model and the neutrino laboratories have attracted
a greater attention and it is hoped that they will play a greater role in
shaping the new theory.

The India-based Neutrino Observatory (INO) has been conceived with
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this objective in view. The INO Laboratory will be set up in a cavern
under a rocky mountain in the Bodi West Hills region in the Theni district,
about 110 Km west of Madurai in Tamil Nadu.

Review Questions

4.1 Obtain the solutions of the Dirac equation for neutrino with zero rest mass
and show that they are the eigenfunctions of the chirality and helicity
operators. Using the experimental observation that the neutrino is left-
handed and the antineutrino is right-handed, how do you arrive at the
V–A form of weak interaction?

4.2 Outline Weyl’s two-component theory of neutrino and show that it is
equivalent to the four-component Dirac theory for the neutrino, if you
choose the Weyl representation for the Dirac matrices α and β.

4.3 Write down the Dirac matrices α and β in Dirac or standard represen-
tation and also in Weyl representation. Show that one can go from one
representation to another by means of unitary transformation.

4.4 What is the condition to be fulfilled for neutrino to be a Majorana particle?
Does it allow mass for the left-handed neutrino? Is there any way of
checking experimentally whether neutrino is a Majorana particle?

4.5 What is meant by neutrino oscillations? Discuss briefly the various ex-
periments conducted with solar and atmospheric neutrinos that indicate
neutrino oscillations.

4.6 Discuss the theory of neutrino oscillations and obtain an expression for
neutrino oscillations.

Problems

4.1 Illustrate the neutrinoless double beta decay by means of Feynman dia-
grams, treating nucleon (a) as an elementary particle and (b) as a com-
posite particle consisting of quarks.

4.2 In the Japanese Kamiokande experiment, the interaction of solar neutri-
nos with electrons in the detector consisting of pure water in a tank is
studied. Draw the Feynman diagrams for the interaction of electron neu-
trino and also for the converted muon neutrino with electron. Show that
the electron neutrino can undergo both charged and neutral current weak
interactions whereas the muon interaction can have only neutral current
weak interaction.
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4.3 In the Sudbury Neutrino Observatory in Canada, the interaction of solar
neutrinos with deuterium in the heavy water is studied via the following
reactions:

νe + d → p+ p+ e−.

νx + d → p+ n+ νx, x = e, µ, τ.

Draw the Feynman diagrams for these weak interactions.

4.4 It is known that the solar neutrino oscillates from electron neutrino to
muon neutrino as it travels from the Sun to the earth. Find the oscillation
length for the solar neutrino of energy 8 MeV, given that the mass-squared
difference is

∆m2 = m2
νµ −m

2
νe = 7.1× 10−5 eV2.

4.5 It is known that the atmospheric neutrinos consist of high energy muon
neutrinos and electron neutrinos in the GeV energy range. Find the oscil-
lation lengths of these neutrinos, given that m2

νµ −m
2
νe = 7.1× 10−5 eV2

and |m2
ντ −m

2
νµ | = 2.35× 10−3 eV2.

4.6 In the Super-Kamiokande experiment, it is found that the number of elec-
tron neutrinos that come from below is almost the same as those that
come from above, whereas the number of muon neutrinos that come from
below is much less than that come from above. The neutrinos that come
from below travel through the earth before reaching the detector and the
earth’s diameter is approximately 13,000 Km. Explain this phenomenon.

4.7 Given the following values for the mixing angles:

θ12 = 30o, θ23 = 45o, θ13 = 0o,

construct the 3 × 3 unitary matrix UPMNS , assuming δCP = 0. Express
the mass eigenstates of the neutrinos in terms of their flavour eigenstates.

Solutions to Problems

4.1 Let us consider the neutrinoless double-beta decay (0νββ-decay)

76Ge32 → 76Se32 + 2e−,

in which two neutrons are converted into two protons with the emission of
two electrons. This can be illustrated by the following Feynman diagrams.

Two neutrons in the nucleus are converted into protons, each by the emis-
sion of an intermediate vector boson W−. One W− emits an electron and
a neutrino. The emitted neutrino is absorbed by the other W− and forms
an electron in the final state. This is illustrated in Fig. 4.3 (a).
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Figure 4.3: Feynman diagrams representing neutrinoless double beta decay,
treating (a) nucleons as elementary particles (b) nucleons as composite particles
consisting of quarks.

If one treats the nucleon as a composite state of quarks, then the neutron
consists of two d quarks and one u quark whereas the proton consists of
two u quarks and one d quark. In each neutron, one d quark is converted
into a u quark by weak interaction. This is illustrated in Fig. 4.3 (b).

4.2 In the case of weak interaction

νe + e− → νe + e−,

both charged current and neutral current weak interactions are possible.
The conversion of νe to e− is possible by the emission of charged interme-
diate vector boson W+. The relevant Feynman diagrams are

νe

W+

e−

e−

νe

(a)

e−

Z0

e−

νe

νe

(b)

Figure 4.4: νe − e− scattering through the charged current and neutral current
weak interactions by exchange of W+ and Z0 intermediate vector bosons.

In the case of muon neutrino, νµ cannot change to e− due to flavour
conservation. So, only the neutral current weak interaction is possible
between νµ and e− and the relevant Feynman diagram is given below:
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e−

Z0

e−

νµ

νµ

Figure 4.5: νµ − e− scattering through the neutral current weak interaction by
exchange of Z0 intermediate vector boson.

4.3 The reaction

νe + d→ p+ p+ e−

corresponds to a charged current weak interaction, since it involves the
exchange of W+ intermediate vector boson. The reaction

νx + d→ p+ n+ νx, x = e, µ, τ

involves only the neutral current intermediate vector boson Z0. This in-
teraction is independent of the neutrino flavour.

W+

d

p

p
e−

νe

(a)

n

p

Z0

d

νx

νx

(b)

Figure 4.6: (a) The reaction νe + d→ e− + p+ p through the exchange of W+

intermediate vector boson (b) The reaction νx + d → νx + p + n through the
exchange of Z0 intermediate vector boson.

4.4 It has been shown that the probability of oscillation from electron neutrino
to muon neutrino can be represented by the formula (4.83).

Pµe = sin2 2θ sin2

(
πL

λ21

)
,
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with

λ21 = 2.481

(
Eν

MeV

)(
(eV)2

m2
1 −m2

2

)
.

The sin2
(
πL
λ21

)
is a sinusoidal function of L, the distance travelled. Its

value oscillates between 0 and 1 as L increases.

sin2

(
πL

λ21

)
= 0→ 1→ 0→ 1 · · · , as L increases.

Consequently, the neutrino oscillates between the two flavours as it travels.

Pµe = 0, if L = 0.

= sin2 2θ, if
πL

λ21
=
π

2
.

= 0, if
πL

λ21
= π.

The oscillation length Losc is given by

πLosc

λ21
= π

Losc = λ21 =
2.481× 8

7.1× 10−5
m

= 279.55 Km

4.5 Restricting oneself to the two-flavour oscillation, let us estimate the oscil-
lation lengths of 1 GeV muon neutrino and electron neutrino.

Losc(µ→ τ) =
2.481× 103

2.35× 10−3
m

= 1055.7 Km.

Losc(e→ µ) =
2.481× 103

7.1× 10−5
m

= 3.4944× 104 Km.

4.6 The atmospheric neutrinos are of energy in the GeV range. For the one
GeV electron neutrino, the oscillation length is approximately 3.5 × 104

Km, whereas for one GeV muon neutrino, the oscillation length is approx-
imately 1000 Km. The oscillation length for the electron neutrino is much
larger than the earth’s diameter and so it passes through the earth without
any change of flavour. In the case of muon neutrino, the oscillation length
is approximately 1000 Km which is much smaller than the earth’ diameter
of 13,000 Km and so it undergoes change of flavour to tau neutrino as it
passes through the earth.
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4.7 The PMNS unitary matrix is given by Eq. (4.88) whose elements can be
determined from the given data:

s12 = sin θ12 = sin 30o = 1
2 c12 = cos θ12 = cos 30o =

√
3

2

s23 = sin θ23 = sin 45o = 1√
2

c23 = cos θ23 = cos 45o = 1√
2

s13 = sin θ13 = sin 0o = 0 c13 = cos θ13 = cos 0o = 1

Substituting these values in the U-matrix (4.88), we get

U =

√
1

8

 √6
√

2 0

−1
√

3 2

1 −
√

3 2


and

U† =

√
1

8

 √6 −1 1√
2
√

3 −
√

3
0 2 2


The mass eigenstates are given by ν1

ν2

ν3

 = U†

 νe
νµ
ντ

 .
Explicitly, the mass eigenstates of the neutrinos can be written in terms
of their flavour eigenstates as given below:

ν1 =

√
3

4
νe −

√
1

8
(νµ − ντ ).

ν2 =

√
1

4
νe +

√
3

8
(νµ − ντ ).

ν3 =

√
1

2
(νµ + ντ ).



Chapter 5

The Propagation Kernel
and Feynman Diagrams

In this chapter, we shall introduce the concept of propagation kernel and
discuss how Feynman modified it in such a way that the positive en-
ergy states in relativistic Dirac theory are propagated forward in time
whereas the negative energy states are propagated backwards in time.
This new view-point has completely revolutionized the study of quantum
electrodynamics and enabled the visualization of quantum electrodynamic
processes by means of Feynman diagrams. It is said that more than Feyn-
man, it was Freeman Dyson who has popularized the Feynman Diagrams
and showed that Feynman’s approach is equivalent to the field theoretical
method.

For the study of a given electrodynamic process, one has to draw all
possible Feynman diagrams for the process and calculate the transition
probability by formulating a set of rules known as Feynman rules.

5.1 The Propagation Kernel

5.1.1 In non-relativistic Schrödinger theory

First let us consider the non-relativistic Schrödinger equation

i~
∂Ψ(x, t)

∂t
= HΨ(x, t), (5.1)

114
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and introduce the concept of propagation kernel. It is an extension of
the Green’s function technique1, introduced in the theory of scattering.
Equation (5.1) gives the infinitesimal change in the wave function Ψ due
to a small increment in time. To obtain Ψ(x2, t2) from Ψ(x1, t1), one
has to go through a series of successive incremental steps but Feynman
chose to take a great leap forward with the help of a propagation kernel.
The propagation kernel K(x2t2;x1t1) describes the evolution of the state
function Ψ(x, t) and it is defined by

Ψ(x2, t2) =

∫
d3x1K(x2t2 : x1t1)Ψ(x1, t1), t2 ≥ t1. (5.2)

First let us assume that H is a time independent operator with eigenfunc-
tions ψn(x) and eigenvalues En, such that

Hψn(x) = Enψn(x). (5.3)

The eigenfunctions are orthonormal and obey the closure property.∫
d3xψ∗n(x)ψm(x) = δmn; (5.4)∑
n

ψn(x)ψn(x′) = δ(x− x′). (5.5)

We can now expand Ψ(x1, t1) in terms of the complete set of orthonormal
eigenfunctions ψn(x).

Ψ(x1, t1) =
∑
n

cnψn(x1)e−iEnt1/~. (5.6)

From Eq. (5.6), the expansion coefficients cn can be obtained by using
the orthonormal and closure properties of ψn(x).

cn =

∫
ψ∗n(x1)Ψ(x1, t1)eiEnt1/~d3x1. (5.7)

Using these expansion coefficients, the state vector Ψ(x2, t2) can be writ-
ten as

Ψ(x2, t2) =
∑
n

cnψn(x2)e−iEnt2/~ (5.8)

=
∑
n

∫
ψ∗n(x1)Ψ(x1, t1)ψn(x2)e−iEn(t2−t1)/~ d3x1. (5.9)

1V. Devanathan, Quantum Mechanics, (Ch.9, Theory of Scattering) Narosa Pub-
lishers, New Delhi (2005)
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Comparing Eqs. (5.2) and (5.9), we obtain an expression for the propa-
gation kernel K(x2t2;x1t1).

K(x2t2;x1t1) =
∑
n

ψn(x2)ψ∗n(x1)e−iEn(t2−t1)/~, t2 > t1

=
∑
n

χn(x2, t2)χ∗n(x1, t1)θ(t2 − t1), (5.10)

where

χn(x, t) = ψn(x)e−iEnt/~, (5.11)

θ(t2 − t1) =

{
1, if t2 > t1
0, if t2 < t1

. (5.12)

It is now possible to obtain a differential equation which the propaga-
tion kernel obeys. Since i~ ∂

∂t2
χn(x2, t2) = Hχn(x2, t2), we obtain{

i~
∂

∂t2
−H(x2)

}
K(x2t2;x1t1)

= i~
∑
n

χn(x2, t2)χ∗n(x1, t1)
∂

∂t2
θ(t2 − t1)

= i~
∑
n

ψn(x2)ψ∗n(x1)e−iEn(t2−t1)/~δ(t2 − t1)

= i~
∑
n

ψn(x2)ψ∗n(x1)δ(t2 − t1)

= i~δ(x2 − x1)δ(t2 − t1). (5.13)

The last step is obtained using the closure property (5.5). Although Eq.
(5.13) is obtained assuming H to be time independent, it is true in the
general case2 when H is also time dependent.{

i~
∂

∂t2
−H(x2, t2)

}
K(x2t2;x1t1) = i~δ(x2 − x1)δ(t2 − t1). (5.14)

Equation (5.14) is the differential equation for the propagation kernel
K(x2t2;x1t1) and it is equivalent to the integral form (5.2).

Now, we are in a position to develop a perturbation theory. Suppose

H = H0 + V,

2S. S. Schweber and H. A. Bethe, Mesons and Fields, Vol. 1, Row, Peterson & Co.,
New York (1956).
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where V is a small perturbation. We know the solutions of the unper-
turbed Hamiltonian H0. Then the propagation kernel K0 for V = 0
corresponds to the free particle. This enables us to obtain an integral
equation for K which is equivalent to the differential equation (5.14) with
the boundary condition3

K(2,1) = 0, t2 < t1.

and develop a perturbation theory for K(2,1) in terms of K0(2,1). The
integral equation for K(2,1) is given below:

K(2,1) = K0(2,1)− i

~c

∫
K0(2,3)V (3)K(3,1)d4x3, (5.15)

where d4x is the element of the four dimensional space-time volume4.

d4x = cdt dx dy dz = dx0 dx1 dx2 dx3. (5.16)

It can be easily verified that the integral equation (5.15) is equivalent to
the differential equation{

i~
∂

∂t2
−H0(2)

}
K(2,1) = i~δ4(2,1) + V (2)K(2,1). (5.17)

Equation (5.17) is identical with Eq. (5.14). The integral equation (5.15)
can be written as a perturbation series by repeated application of the
expansion for K occurring on the right hand side of Eq. (5.15).

K(2,1) = K0(2,1) +

(
−i
~c

)∫
K0(2,3)V (3)K0(3,1)d4x3

+

(
−i
~c

)2 ∫
K0(2,3)V (3)K0(3,4)V (4)K0(4,1)d4x3d

4x4

+ · · · . (5.18)

5.1.2 In relativistic Dirac theory

Consider the time-dependent Dirac equation in Feynman notation for a
free particle5 using natural units (~ = c = 1).

(i∇/−m)Ψ(x, t) = 0. (5.19)

3For brevity, we use the notation 1 for (x1, t1) and 2 for (x2, t2).
4The suffixes 1,2,3 are used to denote the space-time coordinates and also the x,y,z

components but the reader can easily infer the correct meaning from the context they
are used.

5The Dirac equation for a free particle in natural units can be written either as

(p/−m)Ψ = 0 or (i∇/−m)Ψ = 0,
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Here Ψ(x1, t1) and Ψ(x2, t2) are four component wave functions and the
propagation kernel K(x2, t2;x1, t1) is a (4 × 4) matrix. The differential
equation that the propagation kernel obeys is analogous to Eq. (5.14).

(i∇/−m)K0(2,1) = iδ4(2,1). (5.20)

Expanding Ψ in terms of the complete set of eigenfunctions of (5.19),
which correspond to both positive and negative energy eigenvalues, we
obtain

K0(2,1) =



∑
En>0

ψn(x2)ψ̄n(x1)e−iEn(t2−t1)

+
∑
En<0

ψn(x2)ψ̄n(x1)e−iEn(t2−t1), t2 > t1,

0, t2 < t1.

(5.21)

For relativistic convenience, one deals with adjoint wave functions ψ̄ in-
stead of ψ† in Eq. (5.21). The solution (5.21) is unsatisfactory since it
corresponds to the one-electron theory instead of the correct hole theory.
It admits the transition of the electron from the positive energy state to
the negative energy state for t2 > t1. This is clearly unphysical since, ac-
cording to the hole theory, all the negative energy states are full and hence
not available for the electron after scattering. So, for t2 > t1, K0 should
contain only positive energy states. Each term ψn(x2)ψ̄n(x1)e−iEn(t2−t1)

is a solution of the homogeneous equation if it is used for all times t2. So,
it is permitted to subtract the sum over all the negative energy states for
both t2 > t1 and t2 < t1. The resulting propagation kernel KF , known as
Feynman’s Propagation Kernel, is given by

KF (2,1) =


∑
En>0

ψn(x2)ψ̄n(x1)e−iEn(t2−t1), t2 > t1

−
∑
En<0

ψn(x2)ψ̄n(x1)e−iEn(t2−t1), t2 < t1.
(5.22)

Please note that e−iEn(t2−t1) = e−i|En||t2−t1|, for both t2 > t1 and t2 < t1.
The perturbation expansion (5.18) is still valid if K0 is replaced by KF .
Only V is now a 4× 4 matrix.

since p/ = γµpµ = γ0E − γ · p, with E = i ∂
∂t

= i ∂
∂x0

and p = −i∇. Thus

p/ = i

{
γ0

∂

∂x0
+ γx

∂

∂x
+ γy

∂

∂y
+ γz

∂

∂z

}
= i∇/, where ∇/ = γ0

∂

∂x0
+γx

∂

∂x
+γy

∂

∂y
+γz

∂

∂z
.
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The choice of the propagation kernel (5.22) causes the positive energy
components to be propagated forward in time while the negative energy
components are propagated backwards in time. This is the most notable
contribution of Feynman, which has resulted in the birth of Feynman’s
positron theory, according to which the electrons are propagated forward
in time whereas the positrons correspond to negative energy electrons that
are propagated backwards in time.

5.1.3 In momentum representation

The Feynman propagation kernel KF obeys the differential equation6

(i∇/−m)KF (2,1) = iδ4(2,1). (5.23)

If S+(p) is the Fourier transform of KF , then

KF (2,1) =

∫ +∞

−∞
S+(p)e−ip·(x2−x1)d4p, (5.24)

where
d4p = dp0dpxdpydpz = dp0dp1dp2dp3.

Denoting the four-dimensional delta function in the form of Fourier trans-
form,

δ4(2,1) =
1

(2π)4

∫ +∞

−∞
e−ip·(x2−x1)d4p, (5.25)

Eq. (5.23) can be written as

(i∇/−m)

∫ +∞

−∞
S+(p)e−ip·(x2−x1)d4p =

i

(2π)4

∫ +∞

−∞
e−ip·(x2−x1)d4p, (5.26)

Equating the integrands in Eq. (5.26), we obtain

(p/−m)S+(p) =
i

(2π)4
(5.27)

This yields the propagation kernel in the momentum representation.

S+(p) =
i

(2π)4

1

(p/−m)
=

i

(2π)4

(p/+m)

p2 −m2
, (5.28)

6We use bold italics p, x to denote three-dimensional vectors and upright bold letters
p, x to denote four vectors.
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since

(p/+m)(p/−m) = p/2 −m2 and p/2 = p2
0 − p2 = p2.

The foregoing discussion yields an expression for the propagation kernel
KF (2, 1).

KF (2,1) =
i

(2π)4

∫
1

(p/−m)
e−ip·(x2−x1)d4p. (5.29)

Equation (5.29) is obtained from Eqs. (5.24) and (5.28).

5.1.4 Interaction with electromagnetic field

Let us consider the interaction of an electron with an external electro-
magnetic field which is represented by an interaction potential

V = eγµAµ = eA/. (5.30)

The Dirac equation for an electron in an electromagnetic field is given by

(i∇/−m)Ψ(x) = eA/Ψ(x). (5.31)

The propagation kernel KA
F for the electron in an electromagnetic field

satisfies the differential equation

(i∇/− eA/−m)KA
F (2, 1) = iδ4(2, 1). (5.32)

The propagation kernel has only positive energy components for t2 > t1
and only negative energy components for t2 < t1. It satisfies the integral
equation

KA
F (2,1) = KF (2,1)− ie

∫
d4x3KF (2,3)A/(3)KA

F (3,1). (5.33)

The perturbation expansion of this integral equation is given below.

KA
F (2,1) = KF (2,1)− ie

∫
d4x3KF (2,3)A/(3)KF (3,1)

+(−ie)2

∫
d4x3

∫
d4x4KF (2,3)A/(3)KF (3,4)A/(4)KF (4,1)

+ · · · . (5.34)



5. The Propagation Kernel and Feynman Diagrams 121

Let us now write down the Dirac wave function Ψ(2) at the space-time
point 2 in terms of the wave function Ψ(1) at the space-time point 1.

Ψ(2) =

∫
KA
F (2,1)βΨ(1)d3x1. (5.35)

For the non-interacting case

Ψ0(2) =

∫
KF (2,1)βΨ0(1)d3x1, (5.36)

where Ψ0 is a solution of the free Dirac equation.

5.2 The Transition Amplitude

5.2.1 First order matrix element

The transition amplitude for an electron to go from some positive energy
state Ψi(x1, t1) at time t1 to some other positive energy state Ψf (x2, t2)
at time t2 is given by

M =

∫
Ψ†f (x2, t2)KF (x2t2,x1t1)βΨi(x1, t1)d3x1d

3x2

=

∫
Ψ̄f (2)βKF (2,1)βΨi(1)d3x1d

3x2. (5.37)

If an external potential acts between t1 and t2, then KF is replaced by
KA
F and one can obtain the first order transition matrix element M1 using

the perturbation series (5.34).

M1 =−ie
∫ ∫ ∫

Ψ̄f (2)βKF (2,3)A/(3)KF (3,1)βΨi(1)d3x1d
3x2d

4x3. (5.38)

Since ∫
KF (3,1)βΨi(1)d3x1 = Ψi(3), (5.39)∫
Ψ̄f (2)βKF (2,3)d3x2 = Ψ̄f (3), (5.40)

the first order matrix element can be rewritten as

M1 = −ie
∫

Ψ̄f (3)A/(3)Ψi(3)d4x3. (5.41)
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Let us choose the initial state to be the positive energy state of an electron
with four-momentum p1 and the final state to be the positive energy state
of the electron with four-momentum p2.

Ψi(x) = u(p1)e−ip1·x; (5.42)

Ψ̄f (x) = ū(p2)eip2·x. (5.43)

If aµ(k) is the Fourier transform of Aµ(x), then

Aµ(x) =

∫
aµ(k)e−ik·xd4k. (5.44)

Substituting the results (5.42) – (5.44) in Eq. (5.41), we obtain

M1 = −ie
∫
ū(p2)a/(k)u(p1)ei(p2−k−p1)·xd4xd4k. (5.45)

Integrating over d4x, we get

M1 = −ie(2π)4

∫
ū(p2)a/(k)u(p1)δ4(p2 − k− p1)d4k, (5.46)

where δ4(p2−k−p1) denotes the energy-momentum conservation at the
interaction point. The integration over d4k is trivial and we finally obtain
the first-order matrix element in a simple form.

M1 = −ie(2π)4ū(p2)a/(k)u(p1), with k = p2 − p1. (5.47)

5.2.2 Second order matrix element

In a similar way, we can obtain the second-order matrix element for the
electron transition from the initial momentum state p1 to the final mo-
mentum state p2. Adopting the same method that we have used to obtain
Eq. (5.41) for the first order matrix element M1, we obtain an expression
for the second order matrix element.

M2 = (−ie)2

∫
d4x3d

4x4Ψ̄f (4)A/(4)KF (4,3)A/(3)Ψi(3). (5.48)

Using expressions (5.42) – (5.44) and (5.29), and performing the integra-
tion over d4x3 and d4x4, we can go to the momentum representation to
obtain

M2 = (−ie)2

∫
d4p d4k1 d

4k2 (2π)4δ4(p2 − k2 − p) δ4(p− k1 − p1)

× ū(p2)a/(k2)
1

p/−m
a/(k1)u(p1). (5.49)
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The integration over d4p and d4k2 can be performed trivially because of
the δ - functions and we are left with only one integration.

M2 =(−ie)2(2π)4

∫
d4k1 ū(p2)a/(p2− p1− k1)

1

p/1 + k/1 −m
a/(k1)u(p1).

(5.50)

Eqs. (5.47) and (5.50) have a simple physical interpretation. Eq. (5.47)
describes an electron of momentum p1 interacting with an electromagnetic
field, represented by −iea/(k), picking up a four-momentum k and making
a transition to the final state with momentum p2. In a similar way, Eq.
(5.50) denotes an electron, that interacts with an electromagnetic field of
four-momentum k1, propagates as a free particle with a kernel 1

p/
1
+k/1−m

until it interacts once again with the electromagnetic field and emerges
as an electron with momentum p2.

5.3 Feynman Diagrams

The propagation of electron interacting with an external field can be con-
veniently depicted by Feynman diagrams as shown in Fig. 5.1. (A) gives
the Feynman diagrams in space-time representation and (B) gives the
Feynman diagrams in momentum-energy representation. Both first order
and second order transitions are considered for illustrative purpose.

The propagation of electron from space-time point (1) to space-time
point (2) is usually called a world line. The world line need not always
go forward in time but sometimes it can also go backwards in time.

5.3.1 In space-time representation

Diagrams A(a) and A(b)

As we follow the world line from (1) to (2) in diagrams A(a) and A(b),
time always increases. So in diagram A(a), the propagation kernelsKF (3,1)
and KF (2,3) consist of sums over positive energy states only as given by
Eq. (5.22) for t2 > t1. Similar is the situation in case of diagram A(b)
where all the propagation kernels KF (3,1), KF (4,3) and KF (2,1) point
towards the increasing time and hence consist of sums over positive energy
states only. Diagram A(b) represents the conventional double scattering.
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Diagram A(b′)

As we follow the world line, we find that we go backwards in time from 3 to
4 and hence the propagation kernel KF (4,3) consists of a sum of negative
energy states only. Feynman interprets this as positron propagating from
4 to 3. In the conventional view-point of increasing time, diagram A(b′)
represents the following sequence of events. An electron-positron pair
is created at space-time point 4, the positron gets annihilated with the
incoming electron at space-time point 3 and the electron propagates to 2
which is observed as the final state in scattering.

Ψi(1)

Ψf (2)

A/(3)

KF (2,3)

KF (3,1)

(a)

Ψi(1)

Ψf (2)

A/(3)

A/(4)

KF (2,4)

KF (3,1)

KF (4,3)

(b)

Ψi(1)

Ψf (2)

A/(4)

A/(3)
KF (2,4)

KF (3,1)

KF (4,3)
↗

(b′)

ui(p1)

uf (p2)

a/(k)

k = p2 − p1

(a)

ui(p1)

uf (p2)

a/(k1)

a/(k2)
1

p/−m

p = p1 + k1
p2 = p + k2

(b)

ui(p1)

uf (p2)

a/(k2)

a/(k1)

1

p/−m

↗

p = p1 + k1
p2 = p + k2

(b′)

(A) In space-time representation

(B) In momentum-energy representation

Figure 5.1: Feynman diagrams (A) in space-time representation and (B) in
momentum-energy representation representing the first order scattering (a) and
the second order scattering (b and b′). The diagrams (b) and (b′) are equivalent.
At each vertex, energy and momentum are conserved.

It is emphasized that both diagrams A(b) and A(b′) are included in
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the single Eq. (5.48) since an integration is performed over all times t3
and t4. So, Eq. (5.48) is usually represented by a single diagram A(b) and
the diagram A(b′) is considered identical to it, since it can be obtained
from diagram A(b) when t4 < t3. This way of description satisfies the
Dirac hole theory. A negative energy electron is lifted from the occupied
negative energy sea to the electron final state 2 whereas the hole in the
negative energy sea is filled by the incoming electron 1. What is the
observed effect that diagram A(b′) represents? An electron is scattered
from state 1 to state 2 but at the same time a positive energy electron
and a negative-sea electron is exchanged. The Pauli principle demands
that the matrix element be given a negative sign. Indeed the Feynman
propagation kernel KF (2,1), given by Eq. (5.22), has a negative sign for
t2 < t1 without explicitly using the Pauli principle. Thus the dynamics of
Feynman’s propagation kernel KF include the negative sign as required
by the Pauli principle. By this novel approach, Feynman is able to de-
velop a theory which can describe quantum electrodynamical processes
without recourse to the complications of old-fashioned hole theory with
its intermediate states. Thus Feynman’s approach greatly simplifies the
calculational procedure and so, it has superseded all the older methods.

5.3.2 In momentum-energy representation

Figure 3.1(B) presents the Feynman diagrams of the afore-discussed events
in momentum-energy representation. Diagram B(a) depicts the first or-
der scattering of an electron by an external field. An electron with
four-momentum p1 interacts with an external field and picks up a four-
momentum k and reaches the final state with four-momentum p2. Di-
agrams B(b) and B(b′) depict the second order scattering. Both the
diagrams describe an electron with an initial four-momentum p1, that is
scattered by an external field, picking up a four-momentum k1 and trav-
els as a virtual particle with a propagator 1

p/−m
and once again scattered,

picking up a four-momentum k2 before reaching the final state with four-
momentum p2. Although the topology of the two diagrams B(b) and
B(b′) are slightly different due to the different ways of representing the
intermediate state, both of them can be described mathematically by the
same expression although they can be considered physically as arising
from different physical processes as explained earlier in our discussion on
space-time representation.

The momentum-energy representation of the events are of great impor-
tance to us since most of the calculations are done in this representation.
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At each vertex, energy and momentum are conserved but at the interme-
diate states, the particle does not satisfy the required energy-momentum
relation E2 = p2 + m2 and hence the intermediate state particles are
sometimes called virtual particles.

For calculational purpose, the momentum-energy representation is
found to be more convenient and most of the quantum electrodynamic
processes are studied by drawing Feynman diagrams in energy-momentum
representation.

5.3.3 Basic vertices in QED

Feynman diagrams in Quantum Electrodynamics (QED) are made up of
vertices which are points where three lines (electron, positron and pho-
ton lines) meet representing electromagnetic interaction with electron or
positron. The basic vertices are: (a) absorption of a photon by an elec-
tron (b) emission of a photon by an electron (c) absorption of a photon
by a positron (d) emission of a photon by a positron (e) electron-positron
pair creation by a photon and (f) electron-positron pair annihilation into
a photon. They are altogether six vertices as shown in Fig. 5.2. A single
vertex is not a valid physical process since energy and momentum cannot
be simultaneously conserved. So, a Feynman diagram for a valid phys-
ical process should consist of two or more such vertices and satisfy the
following conditions:

1. Energy and momentum are conserved at each vertex.

2. The incoming and outgoing lines in a diagram are real particles that
obey the relativistic energy-momentum relation E2 = p2c2 +m2c4.

3. The internal lines (lines in the intermediate stages) are called the
virtual particles that do not satisfy the energy-momentum relation
but they form an integral part of the Feynman diagrams.

Any Feynman diagram consisting only of a single vertex cannot satisfy
simultaneously the conditions 1 and 2 and hence cannot represent a phys-
ical process.

An electron is usually represented by a solid line with an arrow in
the direction of increasing time, a positron by a solid line with an arrow
opposite to the direction of increasing time and a photon by a wavy line.
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(c)

e+

e+

(d)

Time e+ e−
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Figure 5.2: Feynman diagrams representing basic vertices in QED: (a) photon

absorption by electron, (b) photon emission by electron, (c) photon absorption

by positron, (d) photon emission by positron, (e) electron-positron pair creation,

(f) electron-positron pair annihilation.

For a given process, draw all possible diagrams and write down the
matrix element for each diagram and add them up. In other words, one
has to compute the transition amplitude corresponding to each diagram
and find the total amplitude merely by summing them. The total tran-
sition probability is obtained by finding the absolute square of the total
amplitude. If the spins of the initial and final particles are not observed,
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then a sum over the final spin states and an average over the initial spin
states have to be taken.

Review Questions

5.1 Explain how you can study the time evolution of the state vector in
Schrödinger equation by defining a propagation kernel K0(2,1). By intro-
ducing a perturbing potential V , show how the propagation kernel K(2,1)
with the perturbing potential can be expressed as an integral equation and
obtain a perturbation series for K(2,1) in terms of K0(2,1).

5.2 Obtain the propagation kernel for the wave function obeying the Dirac
equation and explain how Feynman’s modification gave a new insight that
led to the development of Feynman’s positron theory.

5.3 Obtain an expression for the transition amplitude for an electron to go
from one positive energy state to another due to an interaction with elec-
tromagnetic field. Deduce the first order and second order matrix elements
for such a transition both in space-time representation and momentum-
energy representation.

5.4 Explain why the momentum-energy representation is preferable for the
study of various processes in quantum electrodynamics.

Problems

5.1 It is said that a single vertex which corresponds to a first order matrix
element is not a valid physical process. But the Coulomb scattering of an
electron by a nucleus is represented by a single vertex and calculated by
using the first order matrix element. Explain the contradiction.

5.2 Draw the Feynman diagrams to describe the Compton scattering. Show
that there are two possible Feynman diagrams which contribute to the
process. Write down the matrix element corresponding to each diagram.

5.3 Show that there are two Feynman diagrams that contribute to the electron-
electron scattering process in the lowest order. Obtain the matrix element
for the two diagrams.

Solutions to Problems

5.1 The Coulomb scattering of an electron by a nucleus is represented by the
Feynman diagram as given in Fig. 6.1. Please note that the wavy line
in figure denotes a virtual photon and not a real photon. A single vertex
does not represent a physical process only if all the particles at a single
vertex are real. So, there is no contradiction and Fig. 6.1 represents a
valid physical process and so the cross section can be calculated using the
first order matrix element (5.47).
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5.2 The two Feynman diagrams for the Compton scattering are given in Fig.
6.3. It is a second order process and the matrix elements can be written
down using Eq. (5.50). For details, refer to Chapter 6.

5.3 The problem of electron-electron scattering is treated in Sec. 6.3. along
with Feynman diagrams. The reader is referred to that section for writing
down the Feynman amplitudes for the process.



Chapter 6

Quantum Electrodynamics

Quantum Electrodynamics (QED) deals with processes involving interac-
tion of charged particles with electromagnetic field. In this chapter, we
shall deal with lowest order Feynman diagrams that describe the processes
involving electrons and photons. If we go to higher orders, we are faced
with problems of infinities and we shall briefly discuss how to tame them
by renormalization techniques in the next chapter.

There are several processes, of which we shall choose the following for
discussion: (1) Rutherford scattering (2) Compton scattering (3) Electron-
electron scattering (4) Electron-positron scattering (5) Electron-positron
pair annihilation (6) Bremsstrahlung (7) Electron-positron pair produc-
tion and (8) Muon pair production in electron-positron collision. As
Schwinger once remarked, Feynman has indeed taken the quantum ele-
crodynamical calculations “to the masses”.

6.1 Rutherford Scattering

Consider the high energy scattering of an electron by the Coulomb po-
tential of a nucleus of charge Ze as depicted in Fig. 6.1. The potential
scattering causes only a three-momentum transfer and no energy trans-
fer. The matrix element for the process can be written down1 using Eq.
(5.47).

M1 = −ie(2π)4ψ̄(pf )a/(q)ψ(pi). (6.1)

1We denote the four-vectors by upright bold letters (p,x), the three-vectors by italic
bold letters (p,x) and the scalars by ordinary italics (p, x).

130
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····
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····
····
····

θ

pi e−

pf

q=pf−pi

e−

×Ze

Figure 6.1: Coulomb scattering of electron by a nucleus of charge Ze. pi and
pf denote the momenta of the incoming and scattered electron and q, the three-
momentum transfer to the electron. Since there is no energy transfer |pi| =
|pf | = p and q2 = 4p2 sin2 θ

2 .

where q = pf−pi is the four-momentum transfer (q0, q) to the electron in
the Coulomb interaction V = Ze/r with a nucleus of charge Ze, r being
the distance measured from the centre of the nucleus. From Eq. (5.44),
we obtain2

a/(q) =
1

(2π)4

∫
eiq·xγµAµ(x)d4x

=
1

(2π)4

∫ ∞
−∞

eiq0x0dx0

∫
e−iq·xγ0V (x)d3x, (6.2)

since A0(x) = V (x) = V (r) = Ze
r and Ak(x) = 0, k = 1, 2, 3 for a

Coulomb interaction. The integrals in Eq. (6.2) can be evaluated using
spherical coordinates and the results are given below.∫ ∞

−∞
eiq0x0dx0 = 2πδ(q0). (6.3)∫

e−iq·xV (x)d3x = Ze

∫
e−iq·r

1

r
d3r =

4πZe

q2
. (6.4)

Substituting Eqs. (6.3) and (6.4) in Eq. (6.2), we get

a/(q) =
1

(2π)3

4πZe

q2
γ0δ(q0). (6.5)

2The convention of summation over repeated indices is used. Greek letters µ, ν, λ, ρ
are used as suffixes to denote the components of four-vectors and Latin letters i, j, k, l
are used as suffixes to denote the components of three-vectors.
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Substituting this a/(q) in Eq. (6.1) and taking its absolute square, we
obtain the transition probability.

|M1|2 = (2π)2

(
4πZe2

q2

)2

|ψ̄(pf )γ0ψ(pi)|2[δ(q0)]2, (6.6)

where the square of the delta function requires some interpretation. Writ-
ing

[δ(q0)]2 = δ(q0) δ(0), (6.7)

the first delta function can be interpreted to mean the conservation of
energy and the second delta function δ(0) can be interpreted to denote
the interaction time as shown below3.

δ(0) = lim
T→∞

lim
x→0

1

2π

∫ +T/2

−T/2
eixtdt = lim

T→∞

T

2π
, (6.8)

where T is interpreted as the time during which interaction takes place.
From Eqs. (6.6) - (6.8), we obtain the transition probability per unit time
to a group of final states in the continuum with energy Ef .

wi→f = 2π

(
4πZe2

q2

)2

|ψ̄(pf )γ0ψ(pi)|2δ(Ei − Ef )ρf , (6.9)

where ρf denotes the density of final states.

If we are considering an initial beam of unpolarized electron and not
interested in the final spin states of the electron, then a sum over the final
spin states and an average over the initial spin states have to be taken.
For this, we use Eq. (2.75).∑

|ψ̄(pf )γ0ψ(pi)|2 =
1

2
Tr
(
γ0(p/i +m) γ̃0 (p/f +m)

)
, (6.10)

where γ̃0 = γ0γ
†
0γ0 = γ0. and p/ = γ0E − γ · p. Since the trace4 of a

3The integral representation of the delta function δ(x) is used.

δ(x) =
1

2π

∫ +∞

−∞
eixtdt.

4The reader is advised to refer to Sec. 2.2 (Algebra of γ matrices) for details of
evaluation of traces.
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product of an odd number of γ matrices vanishes, we get5

∑
|ψ̄(pf )γ0ψ(pi)|2 =

1

2
Tr

(
γ0p/i︸︷︷︸ γ0 p/f +m2

)
=

1

2
Tr
(

(−p/iγ0 + 2Ei)γ0p/f +m2
)

=
1

2
Tr
(
−p/ip/f + 2Eiγ0p/f +m2

)
= −2 pi · pf + 4EiEf + 2m2. (6.11)

Expanding the scalar product of the four-vectors pi · pf = EiEf − pi · pf
and rearranging, we get∑

|ψ̄(pf )γ0ψ(pi)|2 = 2EiEf + 2pipf cos θ + 2m2, (6.12)

where θ denotes the angle of scattering. In the potential scattering that we
are considering, there is no energy transfer but there is only a momentum
transfer. Ei = Ef = E and |pi| = |pf | = p. Hence∑

|ψ̄(pf )γ0ψ(pi)|2 = 2E2 + 2p2 cos θ + 2m2

= 4E2 − 2p2(1− cos θ), since m2 = E2 − p2

= 4E2 − 4p2 sin2(θ/2)

= 4E2(1− v2 sin2(θ/2)), (6.13)

since6 v = p/E is the velocity of the incident electron.
The density of final states ρf is given by

ρf =
dn

dEf
=

d3pf
(2π)3dEf

=
p2
fdpfdΩ

(2π)3dEf
=
pfEfdΩ

(2π)3
. (6.14)

The last step is obtained using the relation pfdpf = EfdEf .
Substituting (6.13) and (6.14) in Eq. (6.9) and introducing the nor-

malization factor
√

2E for each fermion wave function such that N = 2E
and remembering that Ef = E and pf = p, we get the transition proba-
bility per unit time (the transition rate).

wi→f =
2π

N2

(
4πZe2

q2

)2

4E2

(
1− v2 sin2 θ

2

)
pE

(2π)3
. (6.15)

5Underbraces are used to highlight the factors that are considered in the step-by-step
calculation for the benefit of the reader. Note that γ0p/i = −p/iγ0 + 2Ei.

6E2 = p2 +m2. Differentiating, we get 2EdE = 2pdp. Therefore v = dE/dp = p/E.
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Since the incident wave is normalized to 1 particle per unit volume, the
incident flux is v.

Cross Section =
Transition Rate

Incident Flux

Thus

dσ

dΩ
=

2π

v

(
4πZe2

q2

)2(
1− v2 sin2 θ

2

)
pE

(2π)3
. (6.16)

Substituting q2 = 4p2 sin2(θ/2) in Eq. (6.16) and simplifying, we get

dσ

dΩ
=

1

v2

Z2e4

4p2 sin4(θ/2)

(
1− v2 sin2 θ

2

)
. (6.17)

Equation (6.17) is the Mott scattering cross section. In the non-relativistic
limit, since v = p

E << 1, the cross section (6.17) reduces to the Rutherford
scattering cross section.

dσ

dΩ
=

1

v2

Z2e4

4p2 sin4(θ/2)
. (6.18)

The relativistic effect is to introduce the additional factor (1−v2 sin2(θ/2))
to the Rutherford scattering formula.

6.1.1 Fermi’s golden rule

Above, we have deduced the cross section (6.17) from first principles. But
it is found convenient to use Fermi’s golden rule to obtain the transition
probability per second (transition rate) and differential cross section.

Transition rate = 2π(ΠN)−1|M|2ρf ; (6.19)

dσ =
Transition rate

Incident flux
=

2π

v
(ΠN)−1|M|2ρf ; (6.20)

where (ΠN)−1 denotes Feynman’s normalization factors, |M|2 stands for
the square of the transition matrix element, obtained after summing over
the final spin states and averaging over the initial spin states and ρf is
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the density of final states7. In the present case,

(ΠN)−1 =
1

4E2
, (6.21)

|M|2 =
1

2

∑
spins

|〈uf |O|ui〉|2 , with O =
4πze2

q2
γ0, (6.22)

ρf =
pE

(2π)3
dΩ. (6.23)

Substituting (6.21) - (6.23) into Eq. (6.20), we obtain the Mott differential
cross section (6.17).

In the consideration of the other quantum electrodynamic processes,
discussed below in this chapter, we shall use Fermi’s golden rule for cal-
culating the differential cross sections.

6.2 Compton Scattering

The scattering of a photon by an electron is known as Compton scattering,
for which the relativistic cross section was first deduced by Klein and
Nishina8. The potential corresponding to the absorption of a photon is
given by

Aµ =

(
4πe2

2ω

)1/2

εµ e
ik·x. (6.24)

For the emission of photon, one has to take A∗µ, the complex conjugate
of (6.24). The potential Aµ in (6.24) is normalized to 1 photon per unit
volume which is not relativistically invariant. For relativistic invariance,
the potential should be normalized to 2ω photons per unit volume. So,
the relativistically invariant potential for the absorption of a photon can
be written as

Aµ =
(
4πe2

)1/2
εµ e

ik·x. (6.25)

To obtain the correct transition probability in a given coordinate system,
it is necessary to reinsert a factor (2ω)−1 for each photon in the initial and
final states. This becomes a part of the normalization factor ΠN which
contains a similar factor for each electron in the initial and final states.

7The reader is referred to Appendix B for a comprehensive discussion on density of
final states.

8O. Klein and Y. Nishina, Z. Physik, 52, 853 (1929).
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In momentum representation, the amplitude to absorb (emit) a photon
of polarization εµ is

−i(4πe2)1/2ε/ .

The polarization vector ε is perpendicular to the propagation vector k.

ε · k = 0.

6.2.1 Kinematics

As a first approximation, consider the electrons to be free and choose the
laboratory system, in which the initial electron is at rest. A photon of
four-momentum k1 is incident along the x-axis on an electron at rest and
the scattered photon makes an angle θ with the incident direction and
carries a four-momentum k2 as shown in Fig. 6.2. The electron recoils at
an angle φ.

x

y

k1

k2

p2

θ

φ

Figure 6.2: Compton scattering in the rest frame of the initial electron.

We shall represent the incoming and outgoing photons by the poten-
tials

A1µ = ε1µe
−ik1·x, A2µ = ε2µe

−ik2·x, (6.26)

and the initial and final electron states by the wave functions

ψ1 = u1e
−ip1·x, ψ2 = u2e

−ip2·x. (6.27)

The electron spinors obey the Dirac equation

p/1u1 = mu1, p/2u2 = mu2, (6.28)

such that

p1 · p1 = m2, p2 · p2 = m2. (6.29)
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For a photon, the energy and momentum are both equal to frequency in
natural units (~ = c = 1) such that

k1 · k1 = 0, k2 · k2 = 0. (6.30)

The polarization four-vector has no time component but its space com-
ponents are normal to its momentum vector. Hence

ε1 · k1 = 0, ε2 · k2 = 0. (6.31)

Conservation of energy and momentum is given by

p1 + k1 = p2 + k2 or p/1 + k/1 = p/2 + k/2. (6.32)

One of the angles, either θ or φ, is sufficient to determine the remaining
quantities. Choosing the rest system of the initial electron, we get

p/2 = p/1 + k/1 − k/2;

p/2
2 = (p/1 + k/1 − k/2)(p/1 + k/1 − k/2)

= p2
1 + k2

1 + k2
2 + 2p1 · k1 − 2p1 · k2 − 2k1 · k2

= m2 + 2mω1 − 2mω2 − 2ω1ω2(1− cos θ). (6.33)

Since p/2
2 is also equal to

p/2
2 = p2 · p2 = m2, (6.34)

we obtain the following relation from Eqs. (6.33) and (6.34).

m(ω1 − ω2) = ω1ω2(1− cos θ);
m

ω2
− m

ω1
= 1− cos θ. (6.35)

This is the well-known formula for the Compton shift in frequency or
wavelength.

6.2.2 Transition matrix element

Compton scattering is a process in which an electron of four-momentum
p1 and photon of four-momentum k1 in the initial state make a transition
to a final state of electron of four-momentum p2 and photon of four-
momentum k2. In the lowest order, it can be envisaged as a second-order
process in which an electron first absorbs a photon of four-momentum
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ε/1

ε/2

e−

e−p1 k1

k2 p2

p1 + k1

(a)

ε/2
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e−

p2
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p1 − k2 k1

k2

(b)

Figure 6.3: Lowest order Feynman diagrams for Compton scattering.

k1 and then emits a photon of four-momentum k2. This process is in-
distinguishable from a process in which the electron first emits a photon
of four-momentum k2 and then absorbs a photon of four-momentum k1.
These two modes can be represented by Feynman diagrams (a) and (b)
as shown in Fig. 6.3.

Using the Feynman rules, the matrix elements for the diagrams (a)
and (b) can be written as

Ma = −i4πe2

(
ū2ε/2

1

p/1 + k/1 −m
ε/1u1

)
, (6.36)

Mb = −i4πe2

(
ū2ε/1

1

p/1 − k/2 −m
ε/2u1

)
. (6.37)

Taking the sum of these two contributions, we get

M =Ma +Mb = −i4πe2 {ū2(Oa +Ob)u1} , (6.38)

with

Oa = ε/2

1

p/1 + k/1 −m
ε/1 =

ε/2(p/1 + k/1 +m)ε/1

(p/1 + k/1)2 −m2
, (6.39)

Ob = ε/1

1

p/1 − k/2 −m
ε/2 =

ε/1(p/1 − k/2 +m)ε/2

(p/1 − k/2)2 −m2
. (6.40)

Here, we make an interesting observation. The matrix element Ma goes
over into Mb by making the substitution

k1 −→ −k2 ε1 −→ ε2. (6.41)
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and the total matrix element (the total transition amplitude) is invari-
ant by the substitution (6.41). Such symmetries are known as crossing
symmetries.

We can simplify the expressions (6.39) and (6.40) by choosing a coor-
dinate system in which the initial electron is at rest. The denominators
now simplify to

(p/1 + k/1)2 −m2 = p/2
1 + k/2

1 + 2p/1k/1 −m
2

= p2
1 + k2

1 + 2p1 · k1 −m2 = 2mω1, (6.42)

(p/1 − k/2)2 −m2 = p/2
1 + k/2

2 − 2p/1k/2 −m
2

= p2
1 + k2

2 − 2p1 · k2 −m2 = −2mω2, (6.43)

since

p2
1 = m2, k2

1 = 0, 2p1 · k1 = 2mω1, k2
2 = 0, 2p1 · k2 = 2mω2.

The numerators also can be similarly simplified.

ε/2p/1ε/1 = −ε/2ε/1p/1 + 2p1 · ε1 = −ε/2ε/1p/1, (6.44)

ε/1p/1ε/2 = −ε/1ε/2p/1 + 2p1 · ε2 = −ε/1ε/2p/1, (6.45)

since p1 has only a time component whereas ε1 and ε2 have only space
components such that p1 · ε1 = 0 and p1 · ε2 = 0. Further when taken
between the electron spinors, they yield

ū2ε/2p/1ε/1u1 = −ū2ε/2ε/1p/1u1 = −mū2ε/2ε/1u1, (6.46)

ū2ε/1p/1ε/2u1 = −ū2ε/1ε/2p/1u1 = −mū2ε/1ε/2u1, (6.47)

since p/1u1 = mu1. Substituting (6.42) - (6.47) into Eqs. (6.39) and (6.40)
and simplifying, we get

ũ2Oau1 =
ū2ε/2k/1ε/1u1

2mω1
= −

ū2ε/2ε/1k/1u1

2mω1
; (6.48)

ū2Obu1 =
ū2ε/1k/2ε/2u1

2mω2
= −

ū2ε/1ε/2k/2u1

2mω2
. (6.49)

The last step in Eqs. (6.48) is obtained by using the commutation relation
k/1ε/1 = −ε/1k/1 + 2k1 ·ε1. The scalar product of four vectors vanishes since
ε1 has no time component and the polarization three vector is normal to
the photon three-momentum. A similar argument leads also to the last
step in Eq. (6.49).
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6.2.3 Transition probability

The absolute square of the transition matrix element M yields the tran-
sition probability. If the spin states of the electron in the initial and final
states are not observed, then a sum over the final spin states and an av-
erage over the initial spin states have to be done. This is done by using
the trace techniques discussed earlier.

|M|2 = 16π2e4
∑
|ū2Ou1|2, (6.50)

where9

O = Oa +Ob

=
ε/2ε/1k/1

2mω1
+
ε/1ε/2k/2

2mω2
. (6.51)

Using the trace techniques, we get

∑
|ū2Ou1|2 =

1

2
Tr
[
O(p/1 +m)Õ(p/2 +m)

]
=

1

2
Tr
[
(Oa +Ob)(p/1 +m)(Õa + Õb)(p/2 +m)

]
=

1

2
[Taa + Tab + Tba + Tbb] , (6.52)

where

Õ = γ0O†γ0, Õa = γ0Oa
†γ0, Õb = γ0O†bγ0, (6.53)

and

Taa = Tr
[
Oa(p/1 +m)Õa(p/2 +m)

]
; (6.54)

Tab = Tr
[
Oa(p/1 +m)Õb(p/2 +m)

]
; (6.55)

Tba = Tr
[
Ob(p/1 +m)Õa(p/2 +m)

]
; (6.56)

Tbb = Tr
[
Ob(p/1 +m)Õb(p/2 +m)

]
. (6.57)

9In Eq. (6.51), −O is replaced by O, since the negative sign is of no consequence in
the calculation of transition probability and hence omitted.
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Writing explicitly the operators Oa, Ob, Õa and Õb,

Oa =
1

2mω1
ε/2ε/1k/1, (6.58)

Ob =
1

2mω2
ε/1ε/2k/2, (6.59)

Õa =
1

2mω1
γ0(ε/2ε/1k/1)†γ0 =

1

2mω1
(k/1ε/1ε/2), (6.60)

Õb =
1

2mω2
γ0(ε/1ε/2k/2)†γ0 =

1

2mω2
(k/2ε/2ε/1), (6.61)

we can evaluate the traces Taa, Tab, Tba and Tbb. These have been given
as Problem 4.2 and its solution given at the end of this chapter. Here, we
only give the final results.

Taa =
2

mω1

{
mω2 + 2(k1 · ε2)2

}
. (6.62)

Tbb =
2

mω2

{
mω1 − 2(k2 · ε1)2

}
. (6.63)

Tab = 2
{

2(ε1 · ε2)2 − 1
}
− 2

mω1
(k1 · ε2)2 +

2

mω2
(k2 · ε1)2. (6.64)

Tba = Tab. (6.65)

The term Tbb can be obtained from Taa by using the crossing symmetry
(k1 −→ −k2, ε1 −→ ε2, ω1 −→ ω2 but the term Tab is invariant under
the transformation representing crossing symmetry and it is equal to Tba.

Substituting (6.62) - (6.65) into Eq. (6.52), we obtain∑
|ū2Ou1|2 =

ω2

ω1
+
ω1

ω2
+ 4(ε1 · ε2)2 − 2. (6.66)

Consequently the matrix element square, given by Eq. (6.50) becomes

|M|2 = 16π2e4

{
ω2

ω1
+
ω1

ω2
+ 4(ε1 · ε2)2 − 2

}
. (6.67)

Transition probability per unit time = 2π(ΠN)−1|M|2 ρf , (6.68)

where ΠN denotes the normalization factors that should be included for
the incoming and outgoing particles and ρf , the density of final states.
On dividing the transition probability per unit time (transition rate) by
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incident flux, we obtain the cross section. Since the incident flux is c
which is unity in natural units, we get

dσ =
2π

2E12E22ω12ω2
|M|2 ρf

=
2π

2m2E22ω12ω2
|M|2 ρf , (6.69)

since E1 = m in the laboratory system in which the initial electron is at
rest.

6.2.4 Density of final states

For the two-particle final states, the density of states is given by (vide
Appendix B)

ρf = (2π)−3EaEb
p3
adΩa

Ep2
a − Ea(p · pa)

, (6.70)

where E = Ea + Eb and p = pa + pb. Identifying the particle a with the
outgoing photon and particle b with the scattered electron, we get

Ea = ω2; Eb = E2; E = ω2 + E2 = m+ ω1.
(since energy is conserved)

pa = ω2; pb = p2; p = ω2 + p2 = ω1.
(since momentum is conserved)

Substituting these values in Eq. (6.70), we get

ρf = (2π)−3ω2E2
ω3

2dΩω

(ω2 + E2)ω2
2 − ω2(ω1ω2 cos θ)

= (2π)−3 E2ω
3
2dΩω

(m+ ω1)ω2 − ω1ω2 cos θ

= (2π)−3E2ω
3
2dΩω

mω1
. (6.71)

The last step is obtained using the relation (6.35) for the Compton fre-
quency shift.

6.2.5 Klein-Nishina formula

Substituting Eqs. (6.67) and (6.71) into Eq. (6.69), we obtain the Klein-
Nishina formula for the Compton scattering cross section.

dσ

dΩω
=

e4

4m2

(
ω2

ω1

)2 [ω2

ω1
+
ω1

ω2
+ 4(ε1 · ε2)2 − 2

]
. (6.72)
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For simplicity, we have derived the formula for real polarization vectors
which corresponds to linear polarization. If the polarization vectors are
complex, then one has to replace (ε1 · ε2)2 by (ε1 · ε∗2)2 in Eq. (6.72).
If the polarizations of the incident and final photons are not observed,
then the appropriate cross section is obtained by averaging the initial
polarization states and summing over the final polarization states. The
result of this operation is to replace (ε1 · ε2)2 by 1

2(1 + cos2 θ), while the
terms independent of ε1 and ε2 are multiplied by 2.

dσ

dΩω
=

e4

2m2

(
ω2

ω1

)2 [ω2

ω1
+
ω1

ω2
− sin2 θ

]
. (6.73)

Total cross section

Equation (6.73) gives the differential cross section. To obtain the total
cross section, we need to perform the angular integration. A word of cau-
tion is necessary. The quantity ω2 occurring in expression (6.73) depends
on the scattering angle θ as given by Eq. (6.35). Multiplying Eq. (6.35)
by ω1/m, we obtain

ω1

ω2
= 1 +

ω1

m
(1− cos θ) = 1 + r(1− cos θ), (6.74)

ω2

ω1
=

1

1 + ω1
m (1− cos θ)

=
1

1 + r(1− cos θ)
, (6.75)

where r = ω1
m . The angular integration is performed taking into account

the angular dependence of ω2 (vide solved problem 4.3) to obtain the total
cross section.

σtotal =
2πe4

m2

[
1 + r

(1 + 2r)2
+

2

r2
− 2(1 + r)− r2

2r3
ln(1 + 2r)

]
. (6.76)

Non-relativistic limit

In the non-relativistic limit of photon-electron scattering, when the energy
of the incident photon is very small, ω1 << m, then ω2 ≈ ω1 and the
scattering can be treated as elastic. In this limiting case, Eq. (6.73)
simplifies to

dσ

dΩω
=

e4

2m2
(2− sin2 θ) =

e4

2m2
(1 + cos2 θ). (6.77)



144 Textbook of Relativistic Quantum Physics

Performing the angular integration, we obtain the total cross section.

σ =
e4

2m2

(
4π +

4π

3

)
=

8πe4

3m2
= 0.665× 10−24 cm2. (6.78)

This is the Thomson scattering formula and can be considered as the
non-relativistic limit of Compton scattering for unpolarized photons.

Extreme relativistic limit

In the other extreme relativistic limit when the incident photon energy is
extremely large (ω1 >> m), then Eq. (6.35) reduces to

ω2 ≈
m

1− cos θ

and the differential cross section (6.73) becomes

dσ

dΩω
=

e4

2m2

ω2

ω1
=

e4

2mω1(1− cos θ)
=

e4

4mω1 sin2(θ/2)
. (6.79)

The total cross section in the extreme relativistic limit follows from Eq.
(6.76).

σ =
πe4

mω1

{
ln

2ω1

m
+

1

2

}
. (6.80)

6.3 Electron-electron scattering

Electron-electron scattering in the lowest order can be described by an
exchange of one photon. Since electrons are identical particles, it is not
possible to distinguish the two electrons in the final state. So, the scatter-
ing process is represented by two Feynman diagrams (a) and (b) as shown
in Fig. 6.4. In Fig. 6.4(b), the four-momenta of the outgoing electrons
are exchanged.

The matrix element for the process can easily be written down in the
momentum representation by using the Feynman rules. For the sake of
brevity, we denote the spinors u(p1), u(p2) · · · by u1, u2, · · · .

M = i4πe2

[
(ū4γµu2)(ū3γµu1)

(p1 − p3)2
− (ū3γµu2)(ū4γµu1)

(p1 − p4)2

]
, (6.81)

where summation over µ is implied. Thus, the longitudinal and transverse
waves of the photon are taken into account in a relativistically invariant
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γµ γµ

e−

e− e−

e− p4p3

p1 p2

(a)

γµ γµ

e−

e− e−

e− p3p4

p1 p2

(b)

Figure 6.4: Electron-electron scattering. p1 and p2 denote the four-momenta
of the electrons before collision and p3 and p4 after collision. Due to the indis-
tinguishability of the two electrons in the final state, the exchange diagram (b)
should also be considered.

way. The first term in Eq. (6.81) corresponds to the diagram (a) and the
second term corresponds to the exchange diagram (b). The negative sign
between the two terms arises from the antisymmetry of the two-electron
wave function. To find the transition probability, we have to find the
absolute square10 of the matrix element (6.81). If the electron spins are
not observed, then a sum over the final spin states and an average over
the initial spin states have to be taken. This introduces a factor 1/4.

|M|2 =
1

4
MM†

= 4π2e4
∑
spins

[
(ū4γµu2)(ū3γµu1)

(p1 − p3)2
− (ū3γµu2)(ū4γµu1)

(p1 − p4)2

]

×
[

(ū4γνu2)(ū3γνu1)

(p1 − p3)2
− (ū3γνu2)(ū4γνu1)

(p1 − p4)2

]†
= 4π2e4

[
Taa

(p1 − p3)4
+

Tbb

(p1 − p4)4
− Tab + Tba

(p1 − p3)2(p1 − p4)2

]
,(6.82)

10In finding the absolute square of the matrix element, the summation index µ has
to be changed to ν in the hermitian conjugate of the matrix element, since

∣∣∣∣∣∑
µ

aµ

∣∣∣∣∣
2

=

(∑
µ

aµ

)(∑
ν

a∗ν

)
=
∑
µν

aµa
∗
ν .
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where

Taa =
∑
spins

[
(ū3γµu1)(ū3γνu1)†(ū4γµu2)(ū4γνu2)†

]
= Tr [γµ(p/1 +m)γ̃ν(p/3 +m)] Tr [γµ(p/2 +m)γ̃ν(p/4 +m)] , (6.83)

Tbb =
∑
spins

[
(ū4γµu1)(ū4γνu1)†(ū3γµu2)(ū3γνu2)†

]
= Tr [γµ(p/1 +m)γ̃ν(p/4 +m)] Tr [γµ(p/2 +m)γ̃ν(p/3 +m)] , (6.84)

Tab =
∑
spins

[
(ū3γµu1)(ū4γνu1)†(ū4γµu2)(ū3γνu2)†

]
= Tr [γµ(p/1 +m)γ̃ν(p/4 +m)γµ(p/2 +m)γ̃ν(p/3 +m)] , (6.85)

Tba =
∑
spins

[
(ū4γµu1)(ū3γνu1)†(ū3γµu2)(ū4γνu2)†

]
= Tr [γµ(p/1 +m)γ̃ν(p/3 +m)γµ(p/2 +m)γ̃ν(p/4 +m)] . (6.86)

The symbol γ̃ν stands for γ̃ν = γ0γ
†
νγ0 = γν . Expressions (6.83) and (6.84)

are obtained by direct application of the formula (2.75) and expressions
(6.85) and (6.86) by an extension of the same procedure.

6.3.1 Evaluation of traces

To evaluate the traces Taa and Tbb, we use the following trace formula:

Tr[γµ(a/+m)γν(b/+m)] = 4
[
aµbν + bµaν − gµν(a · b−m2)

]
. (6.87)

Using Eq. (6.87), we find after simplification

Taa = 16
[
p1µp3ν + p3µp1ν − gµν(p1 · p3 −m2)

]
×
[
p2µp4ν + p4µp2ν − gµν(p2 · p4 −m2)

]
= 32

[
(p1 · p2)2 + (p1 · p4)2 + 2m2(m2 − p1 · p3)

]
, (6.88)

where we have used the relations gµνgµν = 4 and

p1 · p2 = p3 · p4; p1 · p3 = p2 · p4; p1 · p4 = p2 · p3;

which are obtained from the energy-momentum conservation law.

p1 + p2 = p3 + p4.

Following the same method, Tbb can be evaluated. But, we can write
down the result by an inspection of Eq. (6.88) by interchanging p3 ↔ p4.

Tbb = 32
[
(p1 · p2)2 + (p1 · p3)2 + 2m2(m2 − p1 · p4)

]
, (6.89)
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The evaluation of Tab is a little involved. Since the trace of a product
of odd number of γ matrices vanishes, we need to take only the terms
involving even number of γ matrices.

Tab = Tr [γµp/1γνp/4γµp/2γνp/3]

+m2 Tr [γµp/1γνp/4γµγν + γµp/1γνγµp/2γν + γµp/1γνγµγνp/3

+γµγνp/4γµp/2γν + γµγνp/4γµγνp/3 + γµγνγµp/2γνp/3]

+m4 Tr [γµγνγµγν ] . (6.90)

Using the anticommutation relations of γ matrices, we can prove the
following formulae involving a product of γ matrices of repeated index11

(vide Problem 4.1):

γµγµ = 4; γµγνγµ = −2γν ; (6.91)

γµγνγργµ = 4gνρ; γµγνγργλγµ = −2γλγργν . (6.92)

Using the above formulae, we get12

γµp/1γνp/4γµ︸ ︷︷ ︸ p/2γνp/3 = −2p/4 γνp/1p/2γν︸ ︷︷ ︸ p/3

= −8(p1 · p2)p/4p/3; (6.93)

Tr(γµp/1γνp/4γµp/2γνp/3) = −8(p1 · p2)Tr(p/4p/3)

= −32(p1 · p2)(p3 · p4); (6.94)

γµp/1γνp/4γµ︸ ︷︷ ︸ γν = −2p/4 γνp/1γν︸ ︷︷ ︸ = 4p/4p/1; (6.95)

Tr(γµp/1γνp/4γµγν) = 4Tr(p/4p/1) = 16(p1 · p4); (6.96)

γµγνγµ︸ ︷︷ ︸ γν = −2γνγν , since γµγνγµ = −2γν (6.97)

Tr (γµγνγµγν) = −2Tr (γµ)2 = −8Tr I = −32. (6.98)

Substituting the above results in Eq. (6.90), we get

Tab = −32(p1 · p2)(p3 · p4) + 16m2{p1 · p4 + p1 · p2 + p1 · p3

+p2 · p4 + p3 · p4 + p2 · p3} − 32m4

= −32(p1 · p2)2 + 32m2{p1 · p4 + p1 · p2 + p1 · p3} − 32m4. (6.99)

11A summation over the repeated index is implied.
12Underbraces are used to highlight the factors that are considered in the step-by-step

calculation for the benefit of the reader.
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Equation (6.99) remains the same under the exchange p3 ↔ p4. So, the
trace Tba = Tab. Hence

Tab + Tba = 64
[
−(p1 · p2)2 +m2{p1 · p4 + p1 · p2 + p1 · p3} −m4

]
= 64

[
−(p1 · p2)2 + 2m2(p1 · p2)

]
. (6.100)

The last step is obtained by invoking the energy-momentum conservation.

p1 · p4 = p1 · (p1 + p2 − p3)

= m2 + p1 · p2 − p1 · p3. (6.101)

The denominators in Eq. (6.82) can be expressed in terms of scalar prod-
ucts of four vectors.

(p1 − p3)2 = p2
1 + p2

3 − 2p1 · p3 = 2(m2 − p1 · p3). (6.102)

(p1 − p4)2 = p2
1 + p2

4 − 2p1 · p4 = 2(m2 − p1 · p4). (6.103)

|M|2 = 32π2e4

[{
(p1 · p2)2 + (p1 · p4)2 + 2m2(m2 − p1 · p3)

}
(m2 − p1 · p3)2

+

{
(p1 · p2)2 + (p1 · p3)2 + 2m2(m2 − p1 · p4)

}
(m2 − p1 · p4)2

−
2
{
−(p1 · p2)2 + 2m2(p1 · p2)

}
(m2 − p1 · p3)(m2 − p1 · p4)

]
. (6.104)

Equation (6.104) is valid in all frames of reference, both in laboratory and
centre of momentum frames.

6.3.2 In the centre of momentum frame

Let us choose the centre of momentum (c.m.) frame for evaluation of
the cross section. It describes the elastic scattering of two electrons as
shown in Fig. 6.5 with the three-momenta of incident electrons equal and
opposite (p2 = −p1). Similarly, the scattered electrons have also their
three-momenta equal and opposite (p4 = −p3). Also the energies of the
incident and scattered electrons are equal.

|p1| = |p2| = |p3| = |p4| = p and E1 = E2 = E3 = E4 = E. (6.105)
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p1 p2

p3

p4

θ

Figure 6.5: Electron-electron scattering in c.m. frame. p1 and p2 denote the
three-momenta before collision and p3 and p4 denote the three-momenta after
collision, θ being the angle of scattering.

Now we can write the scalar product of the four-vectors and the other
quantities in terms of E, p and the angle of scattering θ.

p1 · p2 = E1E2 − p1 · p2 = E2 + p2. (6.106)

p1 · p3 = E1E3 − p1 · p3 = E2 − p2 cos θ. (6.107)

p1 · p4 = E1E4 − p1 · p4 = E2 + p2 cos θ. (6.108)

(p1 − p3)2 = 2m2(1− p1 · p3) = −2p2(1− cos θ). (6.109)

(p1 − p4)2 = 2m2(1− p1 · p4) = −2p2(1 + cos θ). (6.110)

Substituting the results (6.106) - (6.110) into Eqs. (6.104), we obtain an
expression for |M|2 defined in Eq. (6.82).

|M|2 =
32π2e4

p4

[{
(E2 + p2)2 + (E2 + p2 cos θ)2 − 2m2p2(1− cos θ)

}
(1− cos θ)2

+

{
(E2 + p2)2 + (E2 − p2 cos θ)2 − 2m2p2(1 + cos θ)

}
(1 + cos θ)2

+
2
{

(E2 + p2)2 − 2m2(E2 + p2)
}

sin2 θ

]
. (6.111)

Differential cross section in c.m. frame

The cross section is given by

dσ =
2π

v
(ΠN)−1|M|2ρf , (6.112)

where (ΠN)−1 denotes the normalization factor

(ΠN)−1 =
1

2E12E22E32E4
=

(
1

2E

)4
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and ρf is the density of final states for the two-particle system (vide
Appendix).

ρf =
1

(2π)3
E3E4

p3
3dΩ

(E3 + E4)p2
3 − E3(P · p3)

=
1

(2π)3
E2 p

3dΩ

2Ep2
=

Ep

2(2π)3
dΩ, (6.113)

where P = p3 + p4 denotes the total momentum of the two-particle
system which is zero in the c.m. frame. The incident flux depends upon
the relative velocity v of the two colliding particles and in the c.m. system,
it is equal to twice the velocity of either of the colliding partners which
are of equal mass.

v = 2
p

E
.

Collecting all these results, we arrive at an expression for the differential
cross section.

dσ

dΩ
=

2π

2(p/E)

(
1

2E

)4

|M|2 Ep

2(2π)3

=
1

64E2

1

(2π)2
|M|2. (6.114)

Equation (6.114) together with Eq. (6.111) gives the electron-electron
scattering cross section in c.m. frame. The electron-electron scattering
is sometimes known as Mo/ller scattering since it was Mo/ller13 who first
deduced the electron-electron scattering cross section in the laboratory
frame using relativistic quantum mechanics.

6.4 Electron-positron scattering

Electron-positron scattering is often referred to as Bhabha scattering since
it was he who first deduced the relativistic cross section for this process14.
Electron-positron scattering is similar to electron-electron scattering but
the arrows representing the positron are reversed, indicating that the
positron travels backward in time according to Feynman’s positron the-
ory. In this case also, there are two Feynman diagrams, one indicating
an exchange of a photon between electron and positron and the other

13C. Mo/ller, Ann. der. Phys., 85, 711 (1932).
14H. J. Bhabha, Proc. Roy. Soc (London)A154, 195 (1936).
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γµ γµ

e+

e− e+

e− p4p3

p1 p2

(a)

γµ

γµ

e+

e− e+

e−
p4

p1 p2

p3

(b)

Figure 6.6: Electron-positron scattering. Diagram (a) represents the exchange
of one photon between electron and positron and Diagram (b) denotes the e+ e−

pair annihilation and subsequent creation. Both the diagrams contribute to the
process.

indicating electron-positron pair annihilation into a photon which subse-
quently creates an electron-positron pair. Both the diagrams contribute
to the Feynman amplitude for the process. Using the short-hand notation
u1, v̄2, ū3, v4 for the spinors u(p1), v̄(p2), ū(p3), v(p4), we write down the
matrix element for the electron-positron scattering.

M = i4πe2

[
(ū3γµu1)(v̄2γµv4)

(p1 − p3)2
− (v̄2γµu1)(ū3γµv4)

(p1 + p2)2

]
, (6.115)

The relative negative sign between the two amplitudes arises from fermion
exchange - the initial e+ (negative energy electron) is exchanged with the
final e−. To calculate the cross section for unpolarized particles, we need
to find the absolute square of the above amplitude (6.115) by summing
over the final spin states and averaging over the initial spin states.

|M|2 =
1

4
MM†

= 4π2e4
∑
spins

[
{(ū3γµu1)(ū1γνu3)} {(v̄2γµv4)(v̄4γνv2)}

(p1 − p3)4

+
{(v̄2γµu1)(ū1γνv2)} {(ū3γµv4)(v̄4γνu3)}

(p1 + p2)4

−{(ū3γµu1)(ū1γνv2)(v̄2γµv4)(v̄4γνu3)}
(p1 − p3)2(p1 + p2)2

− {(v̄2γµu1)(ū1γνu3)(ū3γµv4)(v̄4γνv2)}
(p1 − p3)2(p1 + p2)2

]
= 4π2e4

[
Taa

(p1 − p3)4
+

Tbb

(p1 + p2)4
− Tab + Tba

(p1 − p3)2(p1 + p2)2

]
,(6.116)
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where

Taa =
∑
spins

[{(ū3γµu1)(ū1γνu3)} {(v̄2γµv4)(v̄4γνv2)}]

= Tr [γµ(p/1 +m)γν(p/3 +m)] Tr [γµ(p/4 −m)γν(p/2 −m)] ; (6.117)

Tbb =
∑
spins

[{(v̄2γµu1)(ū1γνv2)} {(ū3γµv4)(v̄4γνu3)}]

= Tr [γµ(p/1 +m)γν(p/2 −m)] Tr [γµ(p/4 −m)γν(p/3 +m)] ; (6.118)

Tab =
∑
spins

[(ū3γµu1)(ū1γνv2)(v̄2γµv4)(v̄4γνu3)]

= Tr [γµ(p/1 +m)γν(p/2 −m)γµ(p/4 −m)γν(p/3 +m)] ; (6.119)

Tba =
∑
spins

[(v̄2γµu1)(ū1γνu3)(ū3γµv4)(v̄4γνv2)]

= Tr [γµ(p/1 +m)γν(p/3 +m)γµ(p/4 −m)γν(p/2 −m)] . (6.120)

These traces can be calculated by following the same procedure used in
the previous section on electron-electron scattering. By an inspection, it
is found that the traces can be written down directly from Eqs. (6.88),
(6.89), (6.99) and (6.100) by interchanging p2 ↔ −p4.

Taa = 32
[
(p1 · p2)2 + (p1 · p4)2 + 2m2(m2 − p1 · p3)

]
, (6.121)

Tbb = 32
[
(p1 · p4)2 + (p1 · p3)2 + 2m2(m2 + p1 · p2)

]
, (6.122)

Tab = −32(p1 · p4)2 − 32m2{p1 · p2 + p1 · p4 − p1 · p3} − 32m4.(6.123)

Tba = −32(p1 · p4)2 − 32m2{p1 · p2 + p1 · p4 − p1 · p3} − 32m4.(6.124)

Differential cross section in c.m. frame

Till now, we have not specified the frames of reference and so the expres-
sions (6.121) - (6.124) are valid in all frames of reference. Now, we shall
express the scalar products of four-vectors in c.m. frame as given by Eqs.
(6.106) - (6.110) and substitute them in Eq. (6.116) to get |M|2.

|M|2 = 32π2e4

[
(E2 + p2)2 + (E2 + p2 cos θ)2 − 2m2p2(1− cos θ)

p4(1− cos θ)2

+
E4 + p4 cos2 θ + 2m2E2

2E4

− (E2 + p2 cos θ)2 + 2m2(E2 + p2 cos θ)

E2p2(1− cos θ)

]
. (6.125)
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By substituting expression (6.125) in Eq. (6.114), we obtain the differen-
tial cross section for electron - positron scattering.

dσ

dΩ
=

e4

8E2

[
(E2 + p2)2 + (E2 + p2 cos θ)2 − 2m2p2(1− cos θ)

p4(1− cos θ)2

+
E4 + p4 cos2 θ + 2m2E2

2E4

− (E2 + p2 cos θ)2 + 2m2(E2 + p2 cos θ)

E2p2(1− cos θ)

]
, (6.126)

where e2 is the fine structure constant α. In the high energy limit (E >>
m), Eq. (6.126) reduces to

dσ

dΩ
=

e4

8E2

[
1 + cos4(θ/2)

sin4(θ/2)
+

1 + cos2 θ

2
− 2 cos4(θ/2)

sin2(θ/2)

]
. (6.127)

6.5 Electron-positron pair annihilation into two
photons

We have observed earlier that the first order process of electron-positron
pair annihilation into a single photon is unphysical and so we need to
consider necessarily a second order process of pair annihilation into two
photons. This is depicted by Feynman diagrams in Fig. 6.7. The dia-
gram (b) represents the exchange diagram. The Feynman amplitudes for

e+e− p2p1

p1 − k1

ε/1 ε/2

k1 k2

(a)

e+e− p2p1

p1 − k2

ε/2 ε/1

k2 k1

(b)

Figure 6.7: Electron-positron pair annihilation into two photons. The internal
line connecting the two vertices denotes a virtual particle.
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diagrams (a) and (b) can be written as

Ma = −i4πe2

(
v̄2ε/2

1

p/1 − k/1 −m
ε/1u1

)
, (6.128)

Mb = −i4πe2

(
v̄2ε/1

1

p/1 − k/2 −m
ε/2u1

)
, (6.129)

M =Ma +Mb = −i4πe2 {v̄2(Oa +Ob)u1} , (6.130)

where

Oa = ε/2

1

p/1 − k/1 −m
ε/1 = ε/2

p/1 − k/1 +m

(p/1 − k/1)2 −m2
ε/1; (6.131)

Ob = ε/1

1

p/1 − k/2 −m
ε/2 = ε/1

p/1 − k/2 +m

(p/1 − k/2)2 −m2
ε/2. (6.132)

Let us now choose a coordinate system in which the electron is at rest.
By this choice, the matrix element calculation is greatly simplified. The
denominators in Eqs. (6.131) and (6.132) simplify to

(p/1 − k/1)2 −m2 = p/2
1 + k/2

1 − 2p/1k/1 −m
2

= p2
1 + k2

1 − 2p1 · k1 −m2 = −2mω1; (6.133)

(p/1 − k/2)2 −m2 = p/2
1 + k/2

2 − 2p/1k/2 −m
2

= p2
1 + k2

2 − 2p1 · k2 −m2 = −2mω2. (6.134)

The numerators can also be similarly simplified. The first term in the
numerators of Eqs. (6.131) and (6.132) taken between the electron and
positron spinors

v̄2ε/2 p/1ε/1︸︷︷︸u1 = v̄2ε/2(−ε/1p/1 + 2p1 · ε1)u1

= −v̄2ε/2ε/1p/1u1 = −mv̄2ε/2ε/1u1, (6.135)

v̄2ε/1p/1ε/2u1 = v̄2ε/1(−ε/2p/1 + 2p1 · ε2)u1

= −v̄2ε/1ε/2p/1u1 = −mv̄2ε/1ε/2u1, (6.136)

cancels with the third term. Thus we obtain

v̄2Oau1 = −
v̄2ε/2k/1ε/1u1

2mω1
=
v̄2ε/2ε/1k/1u1

2mω1
; (6.137)

v̄2Obu1 = −
v̄2ε/1k/2ε/2u1

2mω2
=
v̄2ε/1ε/2k/2u1

2mω2
. (6.138)
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Transition probability

If we are not interested in the spin states of the electron and positron,
then an average has to be taken over the spin states in calculating the
transition probability.

|M|2 = 16π2e4
∑̄
|v̄2Ou1|2, (6.139)

where

O = Oa +Ob

=
ε/2ε/1k/1

2mω1
+
ε/1ε/2k/2

2mω1
. (6.140)

Using the trace techniques, we get∑
|v̄2Ou1|2 =

1

4
Tr
[
O(p/1 +m)Õ(p/2 −m)

]
=

1

4
Tr
[
(Oa +Ob)(p/1 +m)(Õa + Õb)(p/2 −m)

]
=

1

4
[Taa + Tbb + Tab + Tba] , (6.141)

where

Taa = Tr
[
Oa(p/1 +m)Õa(p/2 −m)

]
, (6.142)

Tbb = Tr
[
Ob(p/1 +m)Õb(p/2 −m)

]
, (6.143)

Tab = Tr
[
Oa(p/1 +m)Õb(p/2 −m)

]
, (6.144)

Tba = Tr
[
Ob(p/1 +m)Õa(p/2 −m)

]
, (6.145)

with

Oa =
ε/2ε/1k/1

2mω1
, Ob =

ε/1ε/2k/2

2mω1
, (6.146)

Õa =
k/1ε/1ε/2

2mω1
, Õb =

k/2ε/2ε/1

2mω2
. (6.147)

The traces are similar to those encountered in the study of Compton
scattering and they can be evaluated following the same procedure. From
the results obtained in Compton scattering, one can write down the traces
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for pair annihilation into two photons by substituting k1 → −k1 and
ω1 → −ω1.

Taa = − 2

mω1

{
mω2 − 2(−k1 · ε2)2

}
. (6.148)

Tbb =
2

mω2

{
−mω1 − 2(k2 · ε1)2

}
. (6.149)

Tab = 2
{

2(ε1 · ε2)2 − 1
}
− 2

mω1
(k1 · ε2)2 +

2

mω2
(k2 · ε1)2. (6.150)

Tba = Tab. (6.151)

Density of final states

For the final states of two particles a and b, the density of states ρf is
given by (vide Appendix B)

ρf = (2π)−3EaEb
p3
adΩa

Ep2
a − Ea(p · pa)

,

where E denotes the total energy and p denotes the total momentum. In
the present case for diagram (a),

Ea = ω1; Eb = ω2; E = ω1 + ω2; p = k1 + k2; pa = k1; |pa| = ω1.

Invoking energy-momentum conservation, we have

p1 + p2 = k1 + k2;

(p1 + p2)2 = (k1 + k2)2;

p2
1 + p2

2 + 2p1 · p2 = k2 + k2
2 + k1 · k2;

2m2 + 2mE2 = 2ω1ω2(1− cos θ). (6.152)

Using the above results, we get

ρf =
ω1ω2

(2π)3

ω3
1dΩ1

(ω1 + ω2)ω2
1 − ω1(ω2

1 + k1 · k2)

=
ω3

1ω2dΩ1

(2π)3(ω1ω2 − k1 · k2)
. (6.153)

Using the relation k1 · k2 = ω1ω2 cos θ and Eq. (6.152), we get

ρf =
ω3

1ω2dΩ1

(2π)3m(m+ E2)
. (6.154)
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If v is the velocity of the incident positron, then the differential cross
section is given by

dσ =
2π

v
(ΠN )|M|2ρf

=
2π

(p2/E2)

1

2E12E22ω12ω2
|M|2 ω3

1ω2dΩ1

(2π)3m(m+ E2)

=
ω2

1

64π2m2p2(m+ E2)
|M|2dΩ1. (6.155)

6.6 Bremsstrahlung

Let us consider a moving electron deflected by the Coulomb potential of a
nucleus. This will cause an emission of radiation according to the classical
theory. This process is known as Bremsstrahlung. We shall calculate the
transition probability for the electron to go from one state to another
with the emission of a photon in the field of a nucleus. Interaction with
an external field is essential for the simultaneous conservation of energy
and momentum for the process. In other words, an electron cannot make
a transition from one state to another emitting a photon while travelling
in a vacuum.

Assuming the Born approximation in which the Coulomb potential
acts only once on the electron, there are two modes by which the electron
can emit a photon. One mode is that the electron is first scattered by the
Coulomb potential and then emits a photon to reach the final state. The
other mode is that the electron emits a photon first and then interacts
with the Coulomb field. Both these modes are indistinguishable and hence
contribute to the total amplitude of transition for the electron from the
initial to the final state. The Feynman diagrams for both the modes are
depicted in Fig. 6.8.

By an inspection of the two Feynman diagrams (a) and (b), one can
write down the total matrix element for the process.

M = −i(4πe2)1/2

[
ū(p2)ε/(k)

1

p/1 + q/−m
a/(q)u(p1)

+ ū(p2)a/(q)
1

p/2 − q/−m
ε/(k)u(p1)

]
, (6.156)

with

a/(q) =
4πze2

q2
δ(q0)γ0 and ε/ =

∑
µ

εµγµ.
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a/(q)

ε/

e−

e−p1

k p2

p1 + q

×Ze

p1 + q = p2 + k

(a)

ε/
a/(q)

e−

e−

p2

p1

p2 − q

k
×Ze

p2 − q = p1 − k

(b)

Figure 6.8: Feynman diagrams representing Bremsstrahlung process.

The electron propagators can be rationalized to yield

1

p/1 + q/−m
=

p/1 + q/+m

(p/1 + q/)2 −m2
=

p/1 + q/+m

−2p1 · q − q2
, (6.157)

1

p/2 − q/−m
=

p/2 − q/+m

(p/2 − q/)2 −m2
=
p/2 − q/+m

2p2 · q − q2
, (6.158)

where we have used the condition that in Coulomb scattering, the energy
transfer to the electron q0 = 0 and the four-momentum square for the
electron p2

1 = m2 and p2
2 = m2. Using the schematic diagram for the

Bremsstrahlung process, the denominators in Eqs. (6.157) and (6.158)
can be simplified to yield

D1 = −2p1 · q − q2 = 2k(E2 − p2 cos θ2); (6.159)

D2 = 2p2 · q − q2 = −2k(E1 − p1 cos θ1); (6.160)

where E1, E2 denote the energies of the incident and outgoing electron
and θ1, θ2 denote the angles of the emitted photon and outgoing electron
as shown in the schematic diagram 6.9.

Summing over the two spin states of the outgoing electron and the two
polarization states of the emitted photon and averaging over the initial
spin states of the electron, we can evaluate the differential cross section
for the process using the Fermi’s golden rule.

dσ =
2π

v1

1

2E12E22ω
|M|2ρf , (6.161)
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E1,p1

ω

E2,p2

θ1
θ2

Figure 6.9: Schematic diagram representing the Bremsstrahlung process. The
emitted photon makes an angle θ1 with the incident electron and θ2 denotes
the direction of the outgoing electron. The two planes, one containing incoming
electron and outgoing photon and the other containing incoming electron and
outgoing electron need not be the same and the angle between them is taken as
φ. The two planes are not shown explicitly in figure.

where v1 denotes the energy of the incident electron and ρf is the den-
sity of final states. The final state consists of the scattered electron, the
emitted photon and the nucleus which is infinitely heavy.

ρf =
1

(2π)6
E2p2dΩ2ω

2dωdΩω, (6.162)

where E2, p2 denote the energy and momentum of the scattered electron,
ω, the frequency of the emitted photon which has a continuous spectrum.
The solid angles dΩ2 and dΩω correspond to those of scattered electron
and emitted photon.

The evaluation of the square of the matrix element is similar to that
of Compton scattering and only the final result for the differential cross
section is given below15:

dσ =
1

2π

(
Ze2

q2

)2

e2dω

ω

p2

p1
sin θ2dθ2 sin θ1dθ1dφ

×
{
p2

2 sin2 θ2(4E2
1 − q2)

(E2 − p2 cos θ2)2
+
p2

1 sin2 θ1(4E2
2 − q2)

(E1 − p1 cos θ1)2

− 2Ap1p2 sin θ1 sin θ2 cosφ− 2Bω2

(E2 − p2 cos θ2)(E1 − p1 cos θ1)

}
, (6.163)

with

A = 4E1E2 − q2 + 2ω2, B = p2
2 sin2 θ2 + p2

1 sin2 θ1.

15R. P. Feynman, Quantum Electrodynamics W. A. Benjamin (1976).
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6.6.1 In the soft photon limit

If the emitted photon energy is small compared to the rest mass of the
electron (in the soft photon limit), then an approximate expression for
the Bremsstrahlung cross section which has a simple interpretation can
be obtained.

Writing the matrix element in terms of k/ instead of q/, we have

M = −i(4πe2)1/2

[
ū(p2)ε/(k)

1

p/2 + k/−m
a/(q)u(p1)

+ ū(p2)a/(q)
1

p/1 − k/−m
ε/(k)u(p1)

]
, (6.164)

Rationalizing the denominator of the matrix element, we get

M = −i(4πe2)1/2 4πze2

q2
ū(p2)

[
ε/(k)

p/2 + k/+m

(p/2 + k/)2 −m2
γ0

+ γ0
p/1 − k/+m

(p/1 − k/)2 −m2
ε/(k)

]
u(p1)

= −i(4πe2)1/2 4πze2

q2
ū(p2)

[
ε/(k)

p/2 + k/+m

2p2 · k
γ0

+ γ0
p/1 − k/+m

(−2p1 · k)
ε/(k)

]
u(p1), (6.165)

since

(p/2 + k/)2 −m2 = p2
2 + k2 + 2p2 · k−m2 = 2p2 · k, (6.166)

(p/1 − k/)
2 −m2 = p2

1 + k2 − 2p1 · k−m2 = −2p1 · k. (6.167)

It is convenient to write the matrix element (6.165) in a simple form.

M = −i(4πe2)1/2 4πze2

q2

{
Ta

2p2 · k
− Tb

2p1 · k

}
, (6.168)

with

Ta = ū(p2)ε/(k)(p/2 + k/+m)γ0u(p1) (6.169)

Tb = ū(p2)γ0(p/1 − k/+m)ε/(k)u(p1) (6.170)

In the soft photon limit, the k/ term in Ta and Tb can be neglected.
Then

Ta = ū(p2) {ε/(k)(p/2 +m)γ0}u(p1)

= ū(p2) (−p/2ε/(k) + 2p2 · ε+mε/(k)) γ0u(p1)

= ū(p2)γ0u(p1)2p2 · ε, since ū(p2)p/2 = mū(p2). (6.171)
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In a similar way, we get

Tb = ū(p2) {γ0(p/1 +m)ε/(k)}u(p1)

= ū(p2)γ0 (−ε/(k)p/1 + 2p1 · ε+mε/(k))u(p1)

= ū(p2)γ0u(p1)2p1 · ε, since p/1u(p1) = mu(p1). (6.172)

Substituting these results in Eq. (6.168), we get

M = −i(4πe2)1/2 4πze2

q2
(ū(p2)γ0u(p1))

(
p2 · ε(k)

p2 · k
− p1 · ε(k)

p1 · k

)
.(6.173)

Squaring the matrix element and taking the sum over the final spin states
and the average over the initial spin states of the electron, we get

dσ =
2π

v1

1

2E12E22ω
|M|2E2p2dΩ2

(2π)3

ω2dωdΩω

(2π)3

=

2π

v1

1

2E12E2

(
4πze2

q2

)2 ∑
spins

|ū(p2)γ0u(p1)|2E2p2dΩ2

(2π)3


×

[
(4πe2)ω2dΩω

2ω(2π)3

(
p2 · ε(k)

p2 · k
− p1 · ε(k)

p1 · k

)2
]
, (6.174)

where the first square bracket denotes the elastic scattering cross section
of electron in the Coulomb field making a transition from an initial state
1 to a final state 2 and the second square bracket gives the probability of
emission of photon in frequency range dω and solid angle dΩω.

6.7 Electron-positron pair production

A single photon of energy greater than twice the electron mass cannot
create an electron-positron pair since energy and momentum has to be
conserved at each vertex and also for the whole process. Although two
photons can create a pair, this process is extremely unlikely since the
photon density is generally very low. However, a single photon can create
a pair in the Coulomb field of a nucleus by sharing some momentum as
shown in Fig. 6.10. It can happen in two ways: (a) The produced positron
(virtual) can share momentum with the external field and emerge as a
real positron or (b) the produced electron (virtual) can share momentum
with the external field and emerge as real electron. These two modes are
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ε/

e+

e−

e−

p2p1

p1 + k

k

a/(q)
×
Ze

(b)

e+

e+ e−

p2p1

p1 + q

k

ε/

a/(q)
×
Ze

(a)

Figure 6.10: Electron-positron pair production in the Coulomb field of a nucleus
by a single photon. The four-momenta satisfy the relation p1 + q + k = p2.

indistinguishable and so the two amplitudes should be added to compute
the cross section for the process.

By an inspection of the two Feynman diagrams (a) and (b), one can
write down the total matrix element for the process.

M = −i(4πe2)1/2

[
u(p2)ε/(k)

1

p/1 + q/+m
a/(q)v(p1)

+ u(p2)a/(q)
1

p/1 + k/−m
ε/(k)v(p1)

]
, (6.175)

with

a/(q) =
4πze2

q2
δ(q0)γ0 and ε/ =

∑
µ

εµγµ.

The matrix elements for this process are similar to those of Bremsstrahlung
and can be evaluated in a similar way.

6.8 Muon pair production in electron-positron
collision

Hitherto, we have considered only processes involving electrons, positrons
and photons. The formalism can easily be extended to include production
of new particles in e− − e+ collisions.
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Let us consider the process

e− + e+ −→ µ− + µ+.

This process is possible if the energy of the colliding partners e− and e+ in
the c.m. frame is greater than the mass equivalent of µ− and µ+ i.e. 212
MeV. At such energies, one can neglect the electron mass (0.511 MeV) in
the calculation.

γµ

γµ

µ+

e− e+

µ−
p4

p1 p2

p3

q = p1 + p2

(a)

•
E1,p1 E2,p2

E3,p3

E4,p4

θ

µ+

e− e+

µ−

(b)

p2 = −p1; p4 = −p3

E1 = E2 = E3 = E4 = E

Figure 6.11: Muon production in e−, e+ collision. The Feynman diagram (a)
represents the process e−e+ −→ µ−µ+. Diagram (b) represents the kinematics
for the process in c.m. frame. E1,p1 and E2,p2 denote the energy and momen-
tum of the colliding partners e− and e+ and E3,p3 and E4,p4 denote the energy
and momentum of the produced particles µ− and µ+. θ denotes the angle at
which the produced particles emerge in the c.m. system.

Using the Feynman rules, the matrix element for the process e−e+ −→
µ−µ+ can be written down. For writing down the matrix elements, we
follow the flow direction of arrow marks in Feynman diagram. We follow
the same convention that we used earlier and write down the spinors
u(p1), v̄(x2), ū(x3), (v̄(x4) as u1, v̄2, ū3, v̄4.

M = i4πe2 [(v̄2γµu1)(ū3γµv4)]

(p1 + p2)2
, (6.176)

where u1 and u3 denote the spinors corresponding to particles (e− and
µ−) and v2 and v4 denote the spinors corresponding to antiparticles (e+

and µ+). The four momenta of the colliding electron and positron are
denoted by p1 and p2 and the four-momenta of the produced µ− and
µ+ are denoted by p3 and p4. The transition probability is the absolute
square of the matrix element (6.176). Since the spins are not observed, a
sum over the final spin states and an average over the initial spin states
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have to be taken. This introduces a factor 1
4 .

|M|2 =
1

4
MM†

=
4π2e4

(p1 + p2)4

∑
spins

[(v̄2γµu1)(ū3γµv4)] [(v̄2γνu1)(ū3γνv4)]†

=
4π2e4

(p1 + p2)4

∑
spins

[
(v̄2γµu1)(v̄2γνu1)†

] [
(ū3γµv4)(ū3γνv4)†

]
.

=
4π2e4

(p1 + p2)4

∑
spins

[(v̄2γµu1)(ū1γνv2)] [(ū3γµv4)(v̄4γνu3)] . (6.177)

Using the trace techniques, we obtain

|M|2 =
4π2e4

(p1 + p2)4
Tr[γµ(p/1 +me)γν(p/2 −me)]

×Tr[γµ(p/4 −mµ)γν(p/3 +mµ)], (6.178)

where me and mµ denote the mass of the electron and muon respectively.
Let us now evaluate the traces, neglecting the terms involving me, since
the energy of the colliding e− and e+ should be greater than twice the
muon mass (∼ 212 MeV). Since the trace of a product of odd number of
γ matrices vanishes, we get

Tr[γµ(p/1 +me)γν(p/2 −me)] = Tr[γµp/1γνp/2]

= 4p1µp2ν + 4p2µp1ν − 4(p1 · p2)gµν ; (6.179)

Tr[γµ(p/4 −mµ)γν(p/3 +mµ)] = Tr[γµp/4γνp/3]−m2
µTr[γµγν ]

= 4p3µp4ν + 4p4µp3ν − 4(p3 · p4)gµν

−4m2
µ gµν . (6.180)

Inserting (6.179) and (6.180) in Eq. (6.178), we get

|M|2 =
4π2e4

(p1 + p2)4
[4p1µp2ν + 4p2µp1ν − 4(p1 · p2)gµν ]

×[4p3µp4ν + 4p4µp3ν − 4(p3 · p4)gµν − 4m2
µ gµν ]

=
128π2e4

(p1 + p2)4
[(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3) +m2

µ(p1 · p2)].

=
128π2e4

(p1 + p2)4
[(p1 · p3)2 + (p1 · p4)2 +m2

µ(p1 · p2)]. (6.181)
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The last step in Eq. (6.181) is obtained using the energy-momentum
conservation in the reaction

p1 + p2 = p3 + p4,

which can be equally expressed as

p1 − p3 = p4 − p2 −→ p1 · p3 = p2 · p4.

p1 − p4 = p3 − p2 −→ p1 · p4 = p2 · p3.

Let us evaluate |M|2 given by Eq. (6.181) in c.m. frame using the
kinematics described in Fig. (b).

p1 · p3 = E1E3 − p1 · p3 = E2 − Ep cos θ; (6.182)

p1 · p4 = E1E4 − p1 · p4 = E2 + Ep cos θ; (6.183)

p1 · p2 = E1E2 − p1 · p2 = 2E2; (6.184)

(p1 + p2)2 = p2
1 + p2

2 + 2p1 · p2 ≈ 4E2; (6.185)

since

E1 = E2 = E3 = E4 = E; p2 = −p1; p4 = −p3;

|p1| = |p2| = E; |p3| = |p4| = p = (E2 −m2
µ)1/2;

p2
1 = p2

2 = m2
e, negligible when compared to their energy E.

Substituting (6.182) - (6.185) into Eq. (6.181) and simplifying, we get

|M|2 =
8π2e4

E4

[
(E2 − Ep cos θ)2 + (E2 + Ep cos θ)2 + 2E2m2

µ

]
= 16π2e4

[
(1 + cos2 θ) +

m2
µ

E2
(1− cos2 θ)

]
. (6.186)

The differential cross section is given by Fermi’s golden rule

dσ =
2π

v
(ΠN)−1|M|2ρf ,

with

v = 2
p1

E1
≈ 2; (ΠN)−1 =

1

2E12E22E32E4
=

1

16E4
; ρf =

E3p3

2(2π)3
dΩ3.
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Hence

dσ

dΩ3
=

e4

16E2

(
1−

m2
µ

E2

)1/2 [
1 + cos2 θ +

m2
µ

E2
(1− cos2 θ)

]
. (6.187)

Integrating over dΩ3 = 2π sin θdθ, we get∫
(1 + cos2 θ)dΩ =

16

3
π;

∫
(1− cos2 θ)dΩ =

8

3
π;

which, in turn, yields the total cross section.

σ =
πe4

3E2

(
1−

m2
µ

E2

)1/2(
1 +

m2
µ

2E2

)

=
πα2

3E2

(
1−

m2
µ

E2

)1/2(
1 +

m2
µ

2E2

)
, (6.188)

where α = e2 denotes the fine structure constant.

6.8.1 Application to hadron production

We have already calculated the cross section for the elastic scattering of
e−e+. If the c.m. energy is sufficiently high, the inelastic events begin to
contribute and if the energy exceeds several GeV, then several hadrons
can also be produced. Thus the e−e+ collision at high energies serve as a
convenient tool for searching for new particles.

In the GeV range, one can neglect the muon mass and the total cross
section for e−e+ → µ−µ+ takes a simple form

σ =
πα2

3E2
=

4πα2

3s2
, (6.189)

where s = 4E2 denotes the square of total energy in c.m. system.
Equation (6.189) has been used successfully to determine the number

of colour degree of freedom for the quarks. Since the hadrons are made
up of quarks, the hadronic final state in e−e+ collision occurs through
the events e−e+ → qiq̄i, where qi, q̄i denote the quark-antiquark pair of
flavour i. If ei is the fractional charge of the quark qi, then the production
cross section for e−e+ → qiq̄i is

σ =
πα2

3E2
Nce

2
i , (6.190)
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where ei denotes the fractional charge of quark of flavour i and Nc denotes
the number of colours. The ratio

R =
σ(e−e+ → hadrons)

σ(e−e+ → µ−µ+)
= Nc

∑
i

e2
i , (6.191)

Restricting the quark flavours to u, d, s, c and choosing Nc = 3, the ratio
of the cross sections R is given in the following Table 6.1.

Table 6.1: Ratio of cross sections R calculated with increasing c.m. collision
energies indicating opening of new channels. Quark flavours: up(u), down(d),
strange(s), charm(c). Nc = 3.

Quark flavour (i) charge (ei)
∑

i e
2
i R = Nc

∑
i e

2
i

u, d 2
3 ,−

1
3 (2

3)2 + (−1
3)2 = 5

9
5
3

u, d, s 2
3 ,−

1
3 ,−

1
3

2
3 2

u, d, s, c 2
3 ,−

1
3 ,−

1
3 ,

2
3

10
9

10
3

The (e−e+) colliding beam experiments performed in the energy range
2.5 GeV - 40 GeV confirm the above theoretical prediction for R and this
is taken as the sufficient evidence for the three colour degrees of freedom
for quarks. The sudden increase in the ratio of R at certain energies points
to the opening of new channels in the production of hadrons.

Review Questions

6.1 Draw the Feynman diagram for the Coulomb scattering of an electron by
a nucleus of charge Ze and deduce the Mott scattering formula. Under
what condition, it will reduce to the Rutherford scattering formula.

6.2 Draw the lowest order Feynman diagrams for the Compton scattering and
write down the Feynman amplitudes for them. Deduce the Klein-Nishina
formula. Show, how it reduces to the Thomson scattering formula in the
non-relativistic limit.

6.3 Explain how you get two Feynman diagrams in the study of electron-
electron scattering by one-photon exchange. Write down the Feynman
diagrams and discuss how you can obtain the cross section for the process.

6.4 Draw the Feynman diagrams for electron-positron scattering and explain
their significance. Discuss how you can obtain the differential cross section
for this process.
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6.5 Discuss the process of electron-positron pair annihilation into two photons
and explain how you can determine the cross section for this process.

6.6 Discuss the process of emission of photons known as bremsstrahlung during
the Coulomb scattering of an electron. For emission of soft photons, show
the cross section can be expressed as a product of two factors, one giving
the probability of Coulomb scattering and the other giving the probability
of photon emission in a frequency interval.

6.7 Consider the process e−e+ −→ µ−µ+ and show that the total cross section
for this process at very high energies is given by a simple expression σ =
4πα2

3s , where α denotes the fine structure constant and s denotes the total
c.m. energy of colliding particles.

Problems

6.1 Using the anticommutation relations of γ matrices, prove the following
formulae involving a product of γ matrices of repeated index16:

γµγµ = 4; γµγνγµ = −2γν ;

γµγνγργµ = 4gνρ; γµγνγργλγµ = −2γλγργν .

6.2 In the discussion on Compton scattering, we have come across the following
traces as given by Eqs. (6.54) - (6.57):

Taa = Tr
[
Oa(p/1 +m)Õa(p/2 +m)

]
;

Tab = Tr
[
Oa(p/1 +m)Õb(p/2 +m)

]
;

Tba = Tr
[
Ob(p/1 +m)Õa(p/2 +m)

]
;

Tbb = Tr
[
Ob(p/1 +m)Õb(p/2 +m)

]
;

with the operators, explicitly given by Eqs. (6.58) - (6.61).

Oa =
1

2mω1
ε/2ε/1k/1,

Ob =
1

2mω2
ε/1ε/2k/2,

Õa =
1

2mω1
γ0(ε/2ε/1k/1)†γ0 =

1

2mω1
(k/1ε/1ε/2),

Õb =
1

2mω2
γ0(ε/1ε/2k/2)†γ0 =

1

2mω2
(k/2ε/2ε/1),

16A summation over the repeated index is implied.
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Evaluate them and obtain the results given by Eqs. (6.62) - (6.65).

Taa =
2

mω1

{
mω2 + 2(k1 · ε2)2

}
.

Tbb =
2

mω2

{
mω1 − 2(k2 · ε1)2

}
.

Tab = 2
{

2(ε1 · ε2)2 − 1
}
− 2

mω1
(k1 · ε2)2 +

2

mω2
(k2 · ε1)2.

Tba = Tab.

6.3 Given the Klein-Nishina formula (6.73), obtain the total cross section for
Compton scattering by performing the angular integration.

6.4 Draw the Feynman diagrams for positron-positron scattering and show
that the differential cross section for this process is the same as that of
electron-electron scattering..

Solutions to Problems

6.1 γµγµ = γ2
0 − γ2

x − γ2
y − γ2

z = 4.

Using the relation γµγν + γνγµ = 2gµν repeatedly, we get17

γµ γνγµ︸︷︷︸ = γµ(−γµγν + 2gµν) = −4γν + 2γν = −2γν

γµγν γργµ︸︷︷︸ = γµγν(−γµγρ + 2gµρ)

= −γµ γνγµ︸︷︷︸ γρ + 2gµργµγν

= γµγµγνγρ − 2gµνγµγρ + 2gµργµγν

= 4γνγρ − 2γνγρ + 2γργν

= 2γνγρ + 2γργν = 4gνρ.

γµγνγρ γλγµ︸ ︷︷ ︸ = γµγνγρ(−γµγλ + 2gµλ)

= −γµγν γργµ︸︷︷︸ γλ + 2gµλγµγνγρ

= γµ γνγµ︸︷︷︸ γργλ − 2gρµγµγνγλ + 2gµλγµγνγρ

= −γµγµγνγργλ + 2gµνγµγργλ − 2gρµγµγνγλ + 2gµλγµγνγρ

= −4γνγργλ + 2γνγργλ − 2γργνγλ + 2γλγνγρ

= −2γνγργλ − 2γργνγλ + 2γλγνγρ

= −4gνργλ + 2γλγνγρ = −2γλγργν .

The last step is obtained using the relation γνγρ = −γργν + 2gνρ.

17Underbraces are used to highlight the terms that are used in the step-by-step
calculation.
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6.2 To derive Taa

The following general relations are used in the evaluation of the traces.18

a/b/ = −b/a/+ 2a · b, (a · b = aµbµ = a0b0 − a · b); (6.192)

a/a/ = a · a; (6.193)

Tr(a/b/) = 4a · b; (6.194)

Tr(a/b/c/d/) = 4(a · b)(c · d)− 4(a · c)(b · d) + 4(a · d)(b · c); (6.195)

where a and b are any four vectors. The trace of a product of an odd
number of γ matrices vanishes. The trace of a product of γ matrices
remains the same if the product is taken in the reverse order.

The trace of a product of matrices A,B,C is invariant under cyclic per-
mutations and it obeys the distribution law.

Tr(ABC) = Tr(BCA) = Tr(CAB); (6.196)

Tr(A+B + C) = TrA+ TrB + TrC. (6.197)

In the present case,

p/1p/1 = p1 · p1 = m2; p/2p/2 = p2 · p2 = m2. (6.198)

k/1k/1 = k1 · k1 = 0; k/2k/2 = k2 · k2 = 0. (6.199)

k/1ε/1 = −ε/1k/1 + 2k1 · ε1 = −ε/1k/1; (6.200)

k/2ε/2 = −ε/2k/2 + 2k2 · ε2 = −ε/2k/2; (6.201)

since k1 ·ε1 = 0 and k2 ·ε2 = 0 because ε1 and ε2 have no time components
but their space components are normal to the momentum vectors k1 and
k2 respectively. Also

ε/1ε/1 = ε1 · ε1 = −1; ε/2ε/2 = ε2 · ε2 = −1. (6.202)

In addition, if we choose the coordinate system to coincide with the rest
system of the initial electron, then

p/1ε/1 = −ε/1p/1 + 2p1 · ε1 = −ε/1p/1, (6.203)

p/1ε/2 = −ε/2p/1 + 2p1 · ε2 = −ε/2p/1, (6.204)

since p1 ·ε1 = p1 ·ε2 = 0 because p1 has only the time component whereas
ε1 and ε2 have only the space components.

Taa = Tr
[
Oa(p/1 +m)Õa(p/2 +m)

]
, (6.205)

18We use bold letters a,b, c,d to denote the four-vectors and bold italic letters
a, b, c,d to denote the three vectors.
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where

Oa =
1

2mω1
(ε/2ε/1k/1),

Õa =
1

2mω1
γ0(ε/2ε/1k/1)†γ0 =

1

2mω1
(k/1ε/1ε/2).

Taa =
1

4m2ω2
1

Tr [ε/2ε/1k/1(p/1 +m)k/1ε/1ε/2(p/2 +m)]

=
1

4m2ω2
1

Tr

[
ε/2ε/1k/1p/1k/1ε/1ε/2p/2 +m2ε/2ε/1 k/1k/1︸︷︷︸ ε/1ε/2

]
. (6.206)

In the trace, we have omitted the cross terms involvingm since they involve
odd number of γ matrices and the trace of a product of an odd number of
γ matrices vanishes.

The m2 term in the trace of Eq. (6.206) vanishes since19

k/1k/1 = k1 · k1 = 0, (6.207)

and we are left with only one term.

Taa =
1

4m2ω2
1

Tr

[
ε/2ε/1 k/1p/1︸︷︷︸ k/1ε/1ε/2p/2

]
=

1

4m2ω2
1

Tr [ε/2ε/1{−p/1k/1 + 2(p1 · k1)}k/1ε/1ε/2p/2] , (6.208)

using the relation

k/1p/1 = −p/1k/1 + 2(p1 · k1). (6.209)

Applying the relation (6.207) once again to Eq. (6.208), the first term
vanishes and we are left with only the second term.

Taa =
1

4m2ω2
1

2(p1 · k1)Tr

[
ε/2 ε/1k/1︸︷︷︸ ε/1ε/2p/2

]
=

1

4m2ω2
1

2(p1 · k1)Tr [ε/2{−k/1ε/1 + 2(k1 · ε1)}ε/1ε/2p/2]

=
1

4m2ω2
1

2(p1 · k1)Tr

[
−ε/2k/1 ε/1ε/1︸︷︷︸ ε/2p/2

]
=

1

4m2ω2
1

2(p1 · k1)Tr [ε/2k/1ε/2p/2] . (6.210)

19We have used underbrace to highlight the relevant terms in the step-by-step eval-
uation.
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Equation (6.210) is obtained by using the relations20

k1 · ε1 = 0 and ε/1ε/1 = ε1 · ε1 = −1. (6.211)

We shall evaluate the trace that occurs in Eq. (6.210).

Tr(ε/2k/1ε/2p/2) = 4(k1 · ε2)(p2 · ε2)− 4(ε2 · ε2)(p2 · k1)

+4(p2 · ε2)(k1 · ε2)

= 8(p2 · ε2)(k1 · ε2) + 4(p2 · k1). (6.212)

Due to energy-momentum conservation,

p2 = p1 + k1 − k2. (6.213)

Consequently,

p2 · ε2 = p1 · ε2 + k1 · ε2 − k2 · ε2 = k1 · ε2. (6.214)

Substituting (6.212) and (6.214) into Eq. (6.210), we get

Taa =
2

m2ω2
1

(p1 · k1){p2 · k1 + 2(k1 · ε2)2}. (6.215)

Now, we shall choose the coordinate system in which the initial electron
is at rest. Then

p1 · k1 = mω1 (6.216)

p2 · k1 = (p1 + k1 − k2) · k1

= mω1 − k1 · k2, since k1 · k1 = 0

= mω1 − ω1ω2(1− cos θ). (6.217)

Using the compton frequency shift formula (6.35),

1− cos θ =
m

ω2
− m

ω1
,

we find

p2 · k1 = mω2. (6.218)

Substituting (6.216) and (6.218) into Eq. (6.215), we get

Taa =
2

mω1

{
mω2 + 2(k1 · ε2)2

}
.

which is the same as Eq. (6.62).

20ε1 has no time component and its space component is normal to the momentum
vector k1.
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To derive Tbb

This can be done by using the same procedure outlined above. But one
can straight away write down the result using the crossing symmetry.

ω1 −→ ω2; k1 −→ −k2; ε2 −→ ε1.

This will yield the expression (6.63) for Tbb .

To derive Tab

Tab = Tr
[
Oa(p/1 +m)Õb(p/2 +m)

]
, (6.219)

where

Oa =
1

2mω1
(ε/2ε/1k/1);

Õb =
1

2mω2
γ0(ε/1ε/2k/2)†γ0 =

1

2mω2
(k/2ε/2ε/1).

Tab =
1

4m2ω1ω2
Tr [ε/2ε/1k/1(p/1 +m)k/2ε/2ε/1(p/2 +m)]

=
1

4m2ω1ω2
Tr
[
ε/2ε/1k/1p/1k/2ε/2ε/1p/2 +m2ε/2ε/1k/1k/2ε/2ε/1

]
=

1

4m2ω1ω2
[A+B], (6.220)

where

A = Tr [ε/2ε/1k/1p/1k/2ε/2ε/1p/2] ; (6.221)

B = m2Tr [ε/2ε/1k/1k/2ε/2ε/1] . (6.222)

In the trace, we have omitted the cross terms involving m since they consist
of odd number of γ matrices and the trace of a product of an odd number
of γ matrices vanishes.

Due to energy-momentum conservation,

p2 = p1 + k1 − k2 and p/2 = p/1 + k/1 − k/2.

Substituting this in Eq. (6.221),

A = Tr [ε/2ε/1k/1p/1k/2ε/2ε/1p/1] + Tr [ε/2ε/1k/1p/1k/2ε/2ε/1k/1]

−Tr [ε/2ε/1k/1p/1k/2ε/2ε/1k/2] (6.223)

= A1 +A2 +A3.
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First let us take A1 and commute p/1 successively with the quantity on the
right until it pairs with the other p/1. Using the result p/1 · p/1 = p2

1 = m2,
we find that one of the terms cancels with B.

A1 = Tr

[
ε/2ε/1k/1 p/1k/2︸︷︷︸ ε/2ε/1p/1

]
= −Tr

[
ε/2ε/1k/1k/2 p/1ε/2︸︷︷︸ ε/1p/1

]
+ 2(p1 · k2)Tr

[
ε/2 ε/1k/1︸︷︷︸ ε/2ε/1p/1

]
= Tr

[
ε/2ε/1k/1k/2ε/2 p/1ε/1︸︷︷︸ p/1

]
− 2(p1 · k2)Tr

[
ε/2k/1 ε/1ε/2︸︷︷︸ ε/1p/1

]
= −Tr

[
ε/2ε/1k/1k/2ε/2ε/1 p/1p/1︸︷︷︸

]
+ 2(p1 · k2)Tr

[
ε/2k/1ε/2 ε/1ε/1︸︷︷︸ p/1

]
−4(p1 · k2)(ε1 · ε2)Tr [ε/2k/1ε/1p/1]

= −m2Tr [ε/2ε/1k/1k/2ε/2ε/1]− 2(p1 · k2)Tr [ε/2k/1ε/2p/1]

−4(p1 · k2)(ε1 · ε2)Tr [ε/2k/1ε/1p/1]

= −B − 2(p1 · k2)Tr [ε/2k/1ε/2p/1]− 4(p1 · k2)(ε1 · ε2)Tr [ε/2k/1ε/1p/1]

(6.224)

Thus

A1 +B = −8(p1 · k2) {(k1 · ε2)(p1 · ε2)− (ε2 · ε2)(p1 · k1)

+ (p1 · ε2)(k1 · ε2)} − 16(p1 · k2)(ε1 · ε2) [(k1 · ε2)(p1 · ε1)

−(ε1 · ε2)(p1 · k1) + (p1 · ε2)(k1 · ε1)]

= 8(p1 · k2)(ε2 · ε2)(p1 · k1) + 16(p1 · k2)(ε1 · ε2)2(p1 · k1)

= −8(p1 · k2)(p1 · k1) + 16(p1 · k2)(p1 · k1)(ε1 · ε2)2, (6.225)

since ε2 · ε2 = −1.

A2 = Tr [ε/2ε/1k/1p/1k/2ε/2ε/1k/1]

= Tr

[
ε/1 k/1ε/2︸︷︷︸ ε/1k/1p/1k/2ε/2

]
= −Tr

[
ε/1ε/2 k/1ε/1︸︷︷︸ k/1p/1k/2ε/2

]
+ 2(k1 · ε2)Tr

[
ε/1ε/1︸︷︷︸ k/1p/1k/2ε/2

]
= Tr [ε/1ε/2ε/1k/1k/1p/1k/2ε/2]− 2(k1 · ε1)Tr [ε/1ε/2k/1p/1k/2ε/2]

−2(k1 · ε2)Tr [k/1p/1k/2ε/2]

= −2(k1 · ε2)Tr [k/1p/1k/2ε/2]

= −8(k1 · ε2) [(p1 · k1)(k2 · ε2)− (k1 · k2)(p1 · ε2)

+(k1 · ε2)(p1 · k2)]

= −8(k1 · ε2)2(p1 · k2) (6.226)
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A3 = −Tr

[
ε/2ε/1k/1p/1 k/2ε/2︸︷︷︸ ε/1k/2

]
= Tr [ε/2ε/1k/1p/1ε/2k/2ε/1k/2]− 2(k2 · ε2)Tr [ε/2ε/1k/1p/1ε/1k/2]

= Tr

[
ε/2ε/1k/1p/1ε/2 k/2ε/1︸︷︷︸ k/2

]
= −Tr

[
ε/2ε/1k/1p/1ε/2ε/1 k/2k/2︸︷︷︸

]
+ 2(k2 · ε1)Tr [ε/2ε/1k/1p/1ε/2k/2]

= 2(k2 · ε1)Tr

[
ε/2ε/1k/1p/1 ε/2k/2︸︷︷︸

]
= −2(k2 · ε1)Tr [ε/2ε/1k/1p/1k/2ε/2]

= 2(k2 · ε1)Tr [ε/1k/1p/1k/2]

= 8(k2 · ε1) [(k1 · ε1)(p1 · k2)− (p1 · ε1)(k1 · k2)

+(k2 · ε1)(p1 · k1)]

= 8(k2 · ε1)2(p1 · k1). (6.227)

Substituting (6.224) - (6.227) into Eq. (6.220), we get

Tab =
2

m2ω1ω2

[
(p1 · k2)(p1 · k1){2(ε1 · ε2)2 − 1} − (k1 · ε2)2(p1 · k2)

+(k2 · ε1)2(p1 · k1)
]

=
2

m2ω1ω2

[
m2ω1ω2{2(ε1 · ε2)2 − 1} −mω2(k1 · ε2)2

+mω1(k2 · ε1)2
]

= 2{2(ε1 · ε2)2 − 1} − 2

mω1
(k1 · ε2)2 +

2

mω2
(k2 · ε1)2.

This is the same expression as given by Eq. (6.64)

6.3 Let us start with the Klein-Nishina formula.

dσ

dΩ
=

e4

2m2

[(
ω2

ω1

)3

+
ω2

ω1
−
(
ω2

ω1

)2

(1− cos2 θ)

]
.

Since ω2 depends on θ as shown in Eqs. (6.74) and (6.75), we need to take
into account its dependence on θ while integrating. We shall perform the
integration of the terms one by one.
First term

∫ (
ω2

ω1

)3

dΩ = 2π

∫ π

0

sin θdθ

(1 + r − r cos θ)3
= 2π

∫ +1

−1

dx

(a+ bx)3
,

with
a = 1 + r, b = −r, x = cos θ.
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Using the standard integral,∫
dx

(a+ bx)3
= − 1

2b(a+ bx)2
,

and substituting the limits, we obtain∫ (
ω2

ω1

)3

dΩ = 4π
1 + r

(1 + 2r)2
. (6.228)

Second term

∫ (
ω2

ω1

)
dΩ = 2π

∫ π

0

sin θdθ

1 + r − r cos θ
= 2π

∫ +1

−1

dx

a+ bx
,

Using the standard integral,∫
dx

a+ bx
=

1

b
ln(a+ bx),

and substituting the limits, we obtain∫ (
ω2

ω1

)
dΩ =

2π

r
ln(1 + 2r). (6.229)

Third term

∫ (
ω2

ω1

)2

dΩ = 2π

∫ π

0

sin θdθ

(1 + r − r cos θ)2
= 2π

∫ +1

−1

dx

(a+ bx)2
,

Using the standard integral,∫
dx

(a+ bx)2
= − 1

b(a+ bx)
,

and substituting the limits, we obtain∫ (
ω2

ω1

)2

dΩ =
4π

1 + 2r
. (6.230)

Fourth term

∫ (
ω2

ω1

)2

cos2 θdΩ = 2π

∫ π

0

cos2 θ sin θdθ

(1 + r − r cos θ)2
= 2π

∫ +1

−1

x2dx

(a+ bx)2
,

Using the standard integral,∫
x2dx

(a+ bx)2
=

1

b3

{
a+ bx− 2a ln(a+ bx)− a2

a+ bx

}
,
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and substituting the limits, we obtain

∫ (
ω2

ω1

)2

cos2 θdΩ = 4π

{
1

r2
− 1 + r

r3
ln(1 + 2r) +

(1 + r)2

r2(1 + 2r)

}
.(6.231)

Collecting all these results, we get the total cross section given by Eq.
(6.76).

4.4 Feynman diagrams representing the positron-positron scattering is given
below. Due to indistinguishability of positrons in the final state, one has
to consider both diagrams (a) and (b).

γµ γµ

e+

e+ e+

e+ p2p1

p3 p4

(a)

γµ γµ

e+

e+ e+

e+ p2p1

p4 p3

(b)

Figure 6.12: Positron-positron scattering.

The matrix element for the process can easily be written down in the
momentum representation by using the Feynman rules. One has to follow
the direction of arrows in writing down the matrix elements. For the sake
of brevity, we denote the spinors v(p1), v(p2) · · · by v1, v2, · · · .

M = i4πe2

[
(v̄4γµv2)(v̄3γµv1)

(p1 − p3)2
− (v̄3γµv2)(v̄4γµv1)

(p1 − p4)2

]
, (6.232)

where summation over µ is implied. The first term in Eq. (6.232) cor-
responds to the diagram (a) and the second term corresponds to the ex-
change diagram (b). The negative sign between the two terms arises from
the antisymmetry of the two-positron wave function. To find the transi-
tion probability, we have to find the absolute square of the matrix element
(6.232). If the positron spins are not observed, then a sum over the final
spin states and an average over the initial spin states have to be taken.
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This introduces a factor 1/4.

|M|2 =
1

4
MM†

= 4π2e4
∑
spins

[
(v̄4γµv2)(v̄3γµv1)

(p1 − p3)2
− (v̄3γµv2)(v̄4γµv1)

(p1 − p4)2

]

×
[

(v̄4γνv2)(v̄3γνv1)

(p1 − p3)2
− (v̄3γνv2)(v̄4γνv1)

(p1 − p4)2

]†
= 4π2e4

[
Taa

(p1 − p3)4
+

Tbb

(p1 − p4)4
− Tab + Tba

(p1 − p3)2(p1 − p4)2

]
,

where

Taa =
∑
spins

[
(v̄3γµv1)(v̄3γνv1)†(v̄4γµv2)(v̄4γνv2)†

]
= Tr [γµ(p/1 −m)γν(p/3 −m)] Tr [γµ(p/2 −m)γν(p/4 −m)] ,

Tbb =
∑
spins

[
(v̄4γµv1)(v̄4γνv1)†(v̄3γµv2)(v̄3γνv2)†

]
= Tr [γµ(p/1 −m)γν(p/4 −m)] Tr [γµ(p/2 −m)γν(p/3 −m)] ,

Tab =
∑
spins

[
(v̄3γµv1)(v̄4γνv1)†(v̄4γµv2)(v̄3γνv2)†

]
= Tr [γµ(p/1 −m)γν(p/4 −m)γµ(p/2 −m)γν(p/3 −m)] ,

Tba =
∑
spins

[
(v̄4γµv1)(v̄3γνv1)†(v̄3γµv2)(v̄4γνv2)†

]
= Tr [γµ(p/1 −m)γν(p/3 −m)γµ(p/2 −m)γν(p/4 −m)] .

The expressions for Taa, Tbb, Tab, Tba given above have been obtained using
the projection operators for positrons∑

spins

vv̄ = p/−m

and they are identical with the expressions (6.83) - (6.86) obtained earlier
for electron-electron scattering except for the change in sign for m. Since
the traces of a product of odd number of gamma matrices vanish, one
has to consider the terms involving even number of gamma matrices only.
That means one has to consider only products of even number of m and
so the results will be independent of the sign of m.

Hence, it follows that the positron-positron scattering cross section will be
identical with electron-electron scattering cross section.



Chapter 7

Radiative Corrections

In the last chapter, we have studied the various processes in QED in the
lowest order of perturbation theory. The higher order terms are expected
to yield small corrections of the order of the fine structure constant α.
But on doing such a calculation, one encounters divergent integrals.

In the lowest order, the momenta of the particles in the intermediate
stage are well defined because of the conservation of momenta at every
vertex. But in higher order, the momenta of the intermediate particles
can vary over a wide range and this causes divergences. Special techniques
are to be devised to overcome these difficulties. These techniques have
come to be known as Regularization and Renormalization. They are based
on the arguments that what one considers in perturbation theory is the
bare electron with mass m0 and charge −e0 and what one observes in
experiments is the physical electron with mass m and charge −e.

The higher order corrections are sometimes called Radiative correc-
tions and they can be broadly classified into three types, electron self
energy, photon self energy or vacuum polarization and vertex corrections.
Any higher order correction to a given process will involve all these types
and so it is sufficient to study them separately and devise methods to
overcome the divergences.

7.1 Electron Self Energy

The Feynman diagram illustrating the mechanism by which an electron
acquires self-energy is given in Fig. 7.1. The incident electron of mo-

179



180 Textbook of Relativistic Quantum Physics

mentum p emits a virtual photon of momentum k which is recaptured
by the emerging electron of the same momentum p. The virtual photon
momentum k can assume any value from 0 to∞ and hence an integration
has to be performed over the momenta and this results in the divergence
problem.

γµ

γµ

p

p− k

p

k

Figure 7.1: Self energy of the electron

The matrix element1 for this process in momentum representation can
be written down2 using the Feynman rules.

M = −i4πe2

∫
ū(p)γµ

1

p/− k/−m
γµu(p)

d4k

(2π)4

1

k2 . (7.1)

Since the initial and final momenta of the electron are identical, the matrix
element can be interpreted as the change in energy of the electron due to
self-interaction. Introducing the normalization factor 1

2E for the electron
spinors, we obtain the following expression for the change in energy due
to self interaction.

∆E = −i4πe
2

2E

∫
ū(p)γµ

1

p/− k/−m
γµu(p)

d4k

(2π)4

1

k2 . (7.2)

Since the momentum of the electron remains the same after the pertur-
bation, the change in energy can be interpreted as the change in mass of
the electron.

E2 = p2 +m2; 2EdE = 2mdm.

1R. P. Feynman, Quantum Electrodynamics, W. A. Benjamin, Inc. (1962).
2We use upright bold letters (k,p) to denote four-vectors, italic bold letters (k,p)

to denote three-vectors. The symbols p/, k/ represent p/ = γµpµ, k/ = γµkµ.
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Thus, we obtain an expression for the change in mass of the electron due
to self-interaction.

∆m =
4πe2

2mi

∫
ū

(
γµ

1

p/− k/−m
γµ

)
u
d4k

(2π)4

1

k2 . (7.3)

The quantity within the bracket can be simplified to yield

γµ
1

p/− k/−m
γµ =

γµ(p/− k/+m)γµ
(p/− k/)2 −m2

=
2k/+ 2m

k2 − 2p · k
, (7.4)

using the following relations.

γµp/γµ = −2p/→ −2m, since p/u = mu;

γµk/γµ = −2k/; γµγµ = 4; p/2 = p2 = m2.

Equation (7.3) now becomes

∆m =
4πe2

2mi

∫
ū(2m+ 2k/)u

k2 − 2p · k
d4k

(2π)4

1

k2 . (7.5)

This integral is divergent and it has posed a major challenge in the study
of QED for over 20 years. We shall closely follow Feynman’s method of
overcoming this problem. Let us modify the propagation kernel of the
photon by multiplying it by a factor c(k2).

1

k2 →
1

k2 c(k
2) =

1

k2

(
−λ2

k2 − λ2

)
=

1

k2 −
1

k2 − λ2
. (7.6)

The second term corresponds to the propagation of photon of mass λ.
Introducing this kernel into Eq. (7.5), we get

∆m =
4πe2

2mi

∫
ū(2m+ 2k/)u

k2 − 2p · k
d4k

(2π)4

1

k2

(
−λ2

k2 − λ2

)
.. (7.7)

A more convenient representation for the modified kernel is

−
∫ λ2

0

dL

(k2 − L)2
= − 1

k2 − L

∣∣∣∣L=λ2

L=0

= − 1

k2 − λ2
+

1

k2 . (7.8)

Using (7.8), we can rewrite Eq. (7.7) in the following form.

∆m = −4πe2

2mi

∫ λ2

0
dL

∫
ū(2m+ 2k/)u

(k2 − 2p · k)(k2 − L)2

d4k

(2π)4
. (7.9)
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The denominator in Eq. (7.9) can be expressed as

1

(k2 − 2p · k)(k2 − L)2
=

∫ 1

0

2(1− x)dx

[k2 − 2xp · k− L(1− x)]3
, (7.10)

using the remarkable Feynman’s formula (vide Solved Problem 5.2)

1

ab2
=

∫ 1

0

2(1− x)dx

[ax+ b(1− x)]2
, (7.11)

with the substitution

a = k2 − 2p · k, b = k2 − L.

Substituting (7.10) into Eq. (7.9), we get

∆m = −4πe2

2mi

∫ λ2

0
dL

∫ 1

0
dx

∫
d4k

(2π)4

2(1− x)ū(2m+ 2k/)u

[k2 − 2xp · k− L(1− x)]3
. (7.12)

There are, in total, three integrations and let us perform them one by
one.

Integration over d4k

The d4k integration can be performed using the following formula (vide
Solved Problems (7.3) and (7.4)),∫

(1, kσ)

(k2 − 2p · k−∆)3

d4k

(2π)4
=

(1, pσ)

32π2i(p2 + ∆)
, (7.13)

which is given in a compact form. The notation (1, kσ) on the L.H.S.
means either 1 or kσ and it correspondingly yields either 1 or pσ on the
R.H.S. represented by the notation (1, pσ).

By making the substitution

p→ xp and ∆→ L(1− x),

we get∫
(1, kσ)

[k2 − 2xp · k− L(1− x)]3
d4k

(2π)4
=

(1, xpσ)

32π2i[x2p2 + L(1− x)]

=
(1, xpσ)

32π2i[m2x2 + L(1− x)]
, (7.14)

since p2 = m2.
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Integration over dL

Taking note of the factors that depend upon L, we get∫ λ2

0

dL

m2x2 + L(1− x)
=

ln[m2x2 + L(1− x)]

1− x

∣∣∣∣L=λ2

L=0

=
1

1− x
ln

[
m2x2 + λ2(1− x)

m2x2

]
. (7.15)

When λ2 � m2, m2x2 occurring in the numerator can be neglected. Of
course, when x ≈ .1, (1 − x)λ2 is not much larger than m2x2, but the
interval over which this is true is so small, for λ2 � m2, that the error is
small when the x-integration is performed. Under this approximation,∫ λ2

0

dL

m2x2 + L(1− x)
≈ 1

1− x
ln

[
λ2(1− x)

m2x2

]
. (7.16)

Substituting (7.14) and (7.16) into Eq. (7.12), we get

∆m = −4πe2

2mi

1

16π2i

∫ 1

0
dx{ū(2m+ 2xp/)u} ln

(
λ2(1− x)

m2x2

)
=

e2

8πm

∫ 1

)
dx{ū(2m+ 2xp/)u ln

(
λ2(1− x)

m2x2

)
=

e2m

2π

∫ 1

0
dx(1 + x) ln

(
λ2(1− x)

m2x2

)
. (7.17)

To obtain the last step, we have used the relations p/u = mu and ūu = 2m.

Integration over dx

Expanding the ln term

ln

(
λ2(1− x)

m2x2

)
= ln

λ2

m2
+ ln

1− x
x2

= 2 ln
λ

m
+ ln

1− x
x2

,

and using the definite integrals (vide Solved Problem 5.5)∫ 1

0
ln

(
1− x
x2

)
dx = 1;

∫ 1

0
x ln

(
1− x
x2

)
dx = − 1/4; (7.18)

we get a simple expression for the change in mass due to self interaction.

∆m

m
=
e2

2π

[
3 ln

λ

m
+

3

4

]
. (7.19)
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The factor (e2/2π) is of the order of 10−3. Even if λ is many times m,
the fractional change in mass will not be very large. However, the shift
in mass depends upon the parameter λ and hence cannot be determined
theoretically. The theoretical and the experimental mass3 are related by

mexp = mth + δm.

All our experimental measurements are made with experimental mass
with self-action included and the theoretical mass (mass without self-
action) cannot be determined. The replacement of theoretical mass mth

by the experimental mass mexp is what is known as mass renormalization
and mexp is often referred to as the renormalized mass.

For a free particle, a theory using mth plus self-action is equivalent to
a theory using mexp + self-action minus ∆m. For a bound-state electron,
a theory using mexp will slightly differ from this principle of equivalence
and this leads to the Lamb shift in the hydrogen atom.

7.2 Higher order corrections

For the sake of illustration, let us consider the scattering of an electron
by a static electric potential such as the Coulomb scattering by a nucleus
of charge ze. Figure 7.2 represents the lowest order Feynman diagram.

····
····
····
····
····

θ

pi e−

pf

q = pf − pi

e−

×Ze

Figure 7.2: Lowest order Feynman diagram representing the scattering of an
electron by a static external potential (for example, Coulomb potential by a
nucleus of charge Ze). pi and pf denote the momenta of the incoming and
scattered electron and q, the three-momentum transfer to the electron.

The Feynman amplitude corresponding to the lowest order diagram
5.2 is given by

M = −ieū(pf )a/(q)u(pi), q = pf − pi. (7.20)

3The theoretical mass mth is the bare mass m0 without self-interaction and the
experimental mass mexp is the observed mass m of the electron.
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The next higher order Feynman diagram for this process involves two
additional vertices representing the emission and reabsorption of virtual
photon as shown in fig. 7.3.

pi

pi

pi − k

q

pf

k

(a)

×Ze

pi

q

pf − k
k

pf

pf

(b)

×Ze

pi

q q

p+ q

p

pf

(c)

×Ze

pi − k

q
k

pf − k

pi

pf

(d)

×Ze

Figure 7.3: Radiative corrections to the scattering of an electron by a static
external potential. pi and pf denote the momenta of the incoming and scattered
electron and q, the three-momentum transfer to the electron.

Restricting oneself to the Feynman diagrams which contain two ex-
tra vertices, involving only one virtual photon, we obtain the radiative
corrections to the process of scattering of electron by the static electric
field. As shown in Fig. 7.3, there are four possibilities that correspond
to second order corrections to the basic process represented by Fig. 7.1.
Each of them can be considered as a modification of the lowest order
diagram shown in Fig. 7.1 by the substitution of one of the three loop
diagrams depicted in Fig. 7.4. Diagram 7.4 (a) is the electron self-energy
diagram, Diagram 7.4 (b) corresponds to the photon self-energy which is
commonly referred to as the vacuum polarization diagram and Diagram
7.4 (c) corresponds to the modification of the basic vertex diagram rep-
resenting Fermion-photon interaction. Each of the diagrams in Fig. 7.3



186 Textbook of Relativistic Quantum Physics

p

p− k

p

k

(a) (b) (c)

pk + p

k

k

p′ − kp− k

p p′
k

p′ − p

Figure 7.4: Feynman diagrams representing (a) Self energy of the electron
(b) Self energy of the photon or Vacuum polarization and (c) Vertex correction.

uses one of the basic modifications depicted in Fig. 7.4.
Diagrams 7.3(a) and 7.3(b) include the basic self-energy diagram 7.4(a);

Diagram 7.4(c) includes the basic photon self-energy diagram 7.4(b) and
Diagram 7.4(d) includes the basic modification in the electron-photon ver-
tex. It is possible to extract the effect of these loop diagrams depicted in
Fig. 7.4 on higher order terms in perturbation theory. The loop diagrams
lead to divergent integrals and it is a major problem to regularize these
integrals and extract meaningful results from them. We have already seen
how one can obtain meaningful results from the self-energy diagram.

M(a)
3 = −4πe3

∫ (
ūfa/

1

p/i −m
γµ

1

p/i − k/−m
γµui

)
1

k

2 d4k

(2π)4
. (7.21)

M(b)
3 = −4πe3

∫ (
ūfγµ

1

p/f − k/−m
γµ

1

p/f −m
a/ui

)
1

k

2 d4k

(2π)4
. (7.22)

M(c)
3 = −4πe3(ūfγµu1)

1

q2

∫ ∑
spins

(
ū

1

p/−m
γµ

1

p/+ q/−m
a/u

)
d4p

(2π)4
;

(7.23)

M(d)
3 = −4πe3

∫ (
ūfγµ

1

p/f − k/−m
a/

1

p/i − k/−m
γµui

)
1

k

2 d4k

(2π)4
.

(7.24)

Comparing the higher order matrix elements (7.21) - (7.24) with the lowest
order matrix element (7.20), we can rewrite Eqs. (7.21) - (7.24) as given
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below:

M(a)
3 = −ieūfa/Σ(pi)ui, (7.25)

M(b)
3 = −ieūfΣ(pf )a/ui, (7.26)

M(c)
3 = −ieūfγµuiΠ, (7.27)

M(d)
3 = −ieūfγµΛui, (7.28)

where

Σ(pi) = −i4πe2

∫ (
1

p/i −m
γµ

1

p/i − k/−m
γµui

)
1

k

2 d4k

(2π)4
; (7.29)

Σ(pf ) = −i4πe2

∫ (
1

p/f − k/−m
γµ

1

p/f −m
γµui

)
1

k

2 d4k

(2π)4
; (7.30)

Π(q) = −i4πe2

∫ ∑
spins

1

q2

(
ū

1

p/−m
γµ

1

p/+ q/−m
a/u

)
d4p

(2π)4
; (7.31)

Λ(pf ,pi) = −i4πe2

∫ (
γµ

1

p/f − k/−m
a/

1

p/i − k/−m
γµ

)
1

k

2 d4k

(2π)4
. (7.32)

Thus, for calculating the second order corrections to the elastic scattering
of electron by a static external potential, we need to evaluate only the
three loop integrals Σ,Π,Λ that occurs in expressions (7.29) - (7.31) and
depicted in Fig. 7.4. All the three integrals are found to be divergent
for large values of the momentum variables of integration. The concepts
of mass and charge renormalization enable one to extract unambiguously
finite radiative corrections of order α, expressed in terms of observed
mass and charge. The importance of this analysis is to point out that the
radiative corrections of lowest order to any process involve the same three
divergent integrals and once we have coped up with these three integrals,
the calculations of the second order radiative corrections to any process
presents no difficulties, in principle.

Review Questions

7.1 Draw a Feynman diagram for calculating the self energy of electron and
show that it involves divergent integrals. Explain the Feynman method of
coping with this integral and show that the electron self-energy is equiva-
lent to a shift in mass. Obtain an expression for the mass shift.

7.2 Explain the concept of mass renormalizaion and explain how one can ob-
tain the Lamb shift for a bound electron in hydrogen atom.
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7.3 Consider the elastic scattering of an electron by a static external potential
and draw Feynman diagrams for obtaining second-order radiative correc-
tions for this process.

Problems

7.1 Show that for two operatorsA andB, whether commuting or non-commuting,
the following expansions are true:

1

A−B
=

1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ · · · .

1

A+B
=

1

A
− 1

A
B

1

A
+

1

A
B

1

A
B

1

A
− · · · .

7.2 Prove the following Feynman’s formulae:

(1)
1

ab
=

∫ 1

0

dz

[az + b(1− z)]2
;

(2)
1

a2b
=

∫ 1

0

2zdz

[az + b(1− z)]3
;

(3)
1

ab2
=

∫ 1

0

2(1− z)dz
[az + b(1− z)]3

.

7.3 Establish the following relation∫ ∞
−∞

(1, kσ)d4k

(2π)4(k2 + iε− L)3
=

(1, 0)

32π2iL
,

which is given in a compact form. The notation (1 : kσ) in the numerator
means either 1 or kσ and correspondingly the notation (1:0) on the right
hand side of the equation means 1 or 0.

7.4 Given the following relation∫ ∞
−∞

(1, kσ)d4k

(2π)4(k2 + iε− L)3
=

(1, 0)

32π2iL
,

change the variable k→ k− p and obtain the relation given below.∫ ∞
−∞

(1; kσ)d4k

(2π)4(k2 − 2p · k−∆)3
=

(1; pσ)

32π2i(p2 + ∆)
,

7.5 Evaluate the following definite integrals and show that they yield the re-
sults given below:

(a)

∫ 1

0

ln[x−2(1− x)]dx = 1; (b)

∫ 1

0

x ln[x−2(1− x)]dx = −1/4.
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Solutions to Problems

7.1 Post-multiply the first of equations by A−B.

1

A−B
(A−B) =

1

A
(A−B) +

1

A
B

1

A
(A−B) +

1

A
B

1

A
B

1

A
(A−B)

+ · · · .
1 = C1 + C2 + C3 + · · · , (7.33)

where

C1 = 1− 1

A
B

C2 =
1

A
B

1

A
(A−B)

=
1

A
B

(
1− 1

A
B

)
=

1

A
B − 1

A
B

1

A
B

C3 =
1

A
B

1

A
B

1

A
(A−B)

=
1

A
B

1

A
B − 1

A
B

1

A
B

1

A
B

On the right-hand side of Eq. (7.33), only the first term (unity) remains
and all the succeeding terms mutually cancel away.

Thus we have proved the first relation. Just change the sign of B in the
relation 1 and we get the second relation.

7.2 Let us start with a simple identity.

1

ab
=

1

b− a

(
1

a
− 1

b

)
=

1

b− a

∫ b

a

dx

x2
. (7.34)

Let x = az+ b(1− z), then dx = (a− b)dz. Substituting them on the right
hand side of Eq. (7.34), we get

1

ab
=

1

b− a

∫
(a− b)dz

[az + b(1− z)]2
(7.35)

The lower limit of integration x = a corresponds to z = 1 and the upper
limit x = b corresponds to z = 0. Hence we get the relation (1)

1

ab
=

∫ 1

0

dz

[az + b(1− z)]2
.

Differentiating both sides of the above equation with respect to a, we get
the relation (2).

1

a2b
=

∫ 1

0

2zdz

[az + b(1− z)]3
.
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Differentiating both sides of Eq. (1) with respect to b, we get the relation
(3)

1

ab2
=

∫ 1

0

2(1− z)dz
[az + b(1− z)]3

.

7.3 First let us consider kσ in the numerator of the integral. Since kσ is a odd
function, the integral vanishes and it corresponds to 0 on the right hand
side of the equation.

To evaluate the integral with 1 in the numerator, we need to use the
contour integration. Since d4k = dωd3k and k2 = ω2 − k2, the factor in
the denominator can be written as

k2 + iε− L = ω2 + iε− (L+ k2).

Then for ε � L + k2, there are poles at ω = ±[(L + k2)1/2 − iε], and
contour integration of ω yields∫ ∞

−∞

dω

ω2 + iε− (L+ k2)
= 2πi

{
1

−2(L+ k2)1/2

}
, (7.36)

with the contour in the upper half-plane.

Let us differentiate both sides of Eq. (7.36) with respect to L. First let us
differentiate the L.H.S. of Eq. (7.36).

d

dL

(
1

ω2 + iε− (L+ k2)

)
=

d

dL

(
1

a− L

)
=

1

(a− L)2

where a = ω2 + iε− k2

d2

dL2

(
1

a− L

)
=

d

dL

(
1

(a− L)2

)
=

2

(a− L)3

Now let us differentiate twice the R.H.S. of Eq. (7.36).

−πi d
dL

(L+ k2)−1/2 =
πi

2
(L+ k2)−3/2

−πi d
2

dL2
(L+ k2)−1/2 =

πi

2

d

dL
(L+ k2)−3/2 = −3πi

4
(L+ k2)−5/2.

Equating the differentiated quantities on both sides, we get∫
dω

{ω2 + iε− (L+ k2)}3
=

3π

8i
(L+ k2)−5/2. (7.37)

Of the four dimensional integration d4k, we have performed the integration
over the energy dω and obtained the result (7.37). Now we have to perform
the integration over three-momenta d3k.∫

(L+ k2)−5/2d3k = 4π

∫ ∞
0

(L+ k2)−5/2k2dk

= 4π
k3

3L(L+ k2)3/2

∣∣∣∣∞
0

=
4π

3L
.
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Collecting all the results, we get finally∫
d4k

(2π)4(k2 + iε− L)3
=

∫
dωd3k

(2π)4{ω2 + iε− (L+ k2)}3

=
1

(2π)4

∫
3π

8i
(L+ k2)−5/2d3k

=
1

(2π)4

3π

8i

4π

3L
=

1

32π2iL
(7.38)

7.4 Let us start from the relation∫ ∞
−∞

(1, kσ)d4k

(2π)4(k2 + iε− L)3
=

(1, 0)

32π2iL
,

Change the variable k→ k′ = k− p. Then k′2 = k2 + p2 − 2p · k.∫
d4k′

(2π)4

1

(k′2 + iε− L)3
=

∫
d4k′

(2π)4

1

{k2 − 2p · k + iε− (L− p2)}3

=

∫
d4k′

(2π)4

1

{k2 − 2p · k + iε−∆}3
(7.39)

where ∆ = L− p2

=

∫
d4k′

(2π)4

1

{k′2 + iε− (∆ + p2)}3

=
1

32π2i(∆ + p2)
. (7.40)

Now, let us consider the other integrand.∫
d4k′

(2π)4

kσ

{k′2 + iε− (∆ + p2)}3
=

∫
d4k′

(2π)4

k′σ + pσ

{k′2 + iε− (∆ + p2)}3
.

The term k′σ will yield zero since it is an odd function in k. So, the term
pσ alone will contribute to the integral. Hence∫

d4k′

(2π)4

k′σ + pσ

{k′2 + iε− (∆ + p2)}3
=

pσ
32π2i(∆ + p2)

. (7.41)

Combining Eqs. (7.40) and (7.41) and changing the dummy variable d4k′

to d4k, we get∫
d4k

(2π)4

1; kσ + pσ

{k2 + iε− (∆ + p2)}3
=

1; pσ
32π2i(∆ + p2)

. (7.42)

7.5 To evaluate the given definite integrals, we need to use the following stan-
dard integrals.∫

lnx dx = x lnx− x;

∫
x lnx dx =

x2

2
lnx− x2

4
.
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One can easily check the above relations by differentiating the R.H.S. and
checking whether it yields the integrand on the L.H.S.

(a) Let us first expand ln
(

1−x
x2

)
.

ln

(
1− x
x2

)
= ln(1− x)− lnx2 = ln(1− x)− 2 lnx.

Then∫ 1

0

ln

(
1− x
x2

)
dx =

∫ 1

0

ln(1− x)dx− 2

∫ 1

0

lnx dx.∫ 1

0

ln(1− x)dx = −
∫ 0

1

ln y dy,

substituting y = 1− x and dy = −dx
= −|y ln y − y|01 = −1.∫ 1

0

lnx dx = |x lnx− x|10 = −1.

Collecting the above results, we get∫ 1

0

ln

(
1− x
x2

)
dx = 1.

(b) A similar procedure is adopted.∫ 1

0

x ln

(
1− x
x2

)
dx =

∫
{x ln(1− x)− x lnx2}dx

=

∫
x ln(1− x)dx− 2

∫
x lnx dx∫ 1

0

x ln(1− x)dx = −
∫

(1− y) ln y dy,

substituting y = 1− x and dy = −dx

= −
∫ 0

1

ln y dy +

∫ 0

1

y ln y dy

= −|y ln y − y|01 +
∣∣(x2/2) lnx− (x2/4)

∣∣1
0

= −1 +
1

4
= −3

4∫ 1

0

x lnx dx =

∣∣∣∣x2

2
lnx− x2

4

∣∣∣∣1
0

= −1

4
.

Collecting the above results, we get∫ 1

0

x ln

(
1− x
x2

)
dx = −1

4
.



Chapter 8

Elements of Quantum Field
Theory

The formulation of Quantum Mechanics is based on the Hamiltonian the-
ory of classical mechanics by treating the canonically conjugate dynamical
variables, position and momentum as operators, obeying certain commu-
tation relations. This is known as the first quantization. The alternative
Lagrangian formulation of classical mechanics and the Hamiltonian ac-
tion principle can be considered more fundamental than the Newtonian
dynamics and they lead to the formulation of both classical and quantum
field theory. The Lagrangian method can be extended to relativistic fields
since the action function is relativistically invariant.

A field is specified by a number of functions, say n, of space-time.

ψρ(x1, x2, x3, t), ρ = 1, 2, 3, . . . , n.

The classic example is that of electromagnetic field, which is described by
the six components of the electric and magnetic field strengths at each
point in space-time. A great merit of field theory is that the special theory
of relativity can be incorporated in it in a simple way. Let us replace the
time variable t by

x0 = ct,

so that all the coordinates x0, x1, x2, x3 now have the dimension of length.
The dynamical character of the field will be described by the field equa-
tions. They will be assumed to be partial differential equations of order,
not greater than two. It will be further assumed that they can be derived
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by a variational principle, in the same way as the Lagrangian equations
of motion for particles are obtained from the action principle.

Let us start with a brief review of classical mechanics1 since most
of the concepts of field theory have been drawn from the Lagrangian-
Hamiltonian formalism.

8.1 A brief review of classical mechanics

8.1.1 The Lagrangian-Hamiltonian formalism

Let us recapitulate the derivation of the Lagrange equations of motion
from the action principle. Let qk(t), k = 1, 2, . . . , n be the generalized

coordinates and q̇k(t) = dqk(t)
dt , the generalized velocities of a mechanical

system and L, its Lagrangian.

L = L(qk(t), q̇k(t), t),

The action integral is

A =

∫ t2

t1

L(qk, q̇k, t)dt. (8.1)

Now consider the variation of qk(t),

qk(t) −→ qk(t) + δqk(t),

where δqk(t) is an arbitrary infinitesimal change, which vanishes at the
end-points t1 and t2.

δqk(t1) = δqk(t2) = 0.

This variation results in the change of q̇k(t) to

q̇k(t) +
d

dt
δqk(t).

The variational principle2 asserts that the action integral has a stationary
value and the variation δA of A due to small variation in path with fixed
end-points is identically zero.

δA =

∫ t2

t1

∑
k

{
∂L

∂qk
δqk +

∂L

∂q̇k

d

dt
δqk

}
dt = 0. (8.2)

1For greater details, the reader is referred to: H. Goldstein, Classical Mechanics,
Narosa Publishing House, New Delhi (Indian Edition) (2001).

2Of the various paths available between the two given end points, the system chooses
the path for which the action integral A is a minimum. This is found by the method
of calculus of variations.
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The second term in the integral is evaluated using the principle of inte-
gration by parts.∫

∂L

∂q̇k

d

dt
δqkdt =

∂L

∂q̇k
δqk

∣∣∣∣t2
t1

−
∫

d

dt

∂L

∂q̇k
δqkdt

= −
∫

d

dt

∂L

∂q̇k
δqkdt, (8.3)

since ∂L
∂q̇k

δqk

∣∣∣t2
t1

vanishes because δqk(t1) = δqk(t2) = 0, due to the fixed

end-points.

Substituting (8.3) into Eq. (8.2), we get

δA =

∫ t2

t1

∑
k

{
∂L

∂qk
− d

dt

∂L

∂q̇k

}
δqkdt = 0. (8.4)

Since the generalized coordinates qk are independent and the variations
δqk are arbitrary, the condition that δA = 0 requires that the coefficients
of δqk in the integrand of (8.4) should separately vanish.

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0, k = 1, 2, . . . , n. (8.5)

Equation (8.5) is known as the Euler-Lagrange equation of motion.

The momentum pk conjugate to the coordinate qk is given by

pk =
∂L

∂q̇k
. (8.6)

Differentiating pk with respect to t and using the relation (8.5), we obtain

ṗk =
∂L

∂qk
. (8.7)

If T is the kinetic energy and V is the potential energy, then the La-
grangian of the system is given by

L = T − V, (8.8)

and the Hamiltonian function is given by

H(qk, pk, t) =
∑
k

pkq̇k − L. (8.9)
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It follows that

∂H

∂pk
= q̇k and

∂H

∂qk
= − ∂L

∂qk
.

Using the Euler-Lagrange Eq. (8.5) and the relation (8.6), we deduce
Hamilton’s canonical equations of motion.

q̇k =
∂H

∂pk
; ṗk = −∂H

∂qk
. (8.10)

From (8.10), one can deduce the equations of motion for a general dy-
namical variable F ≡ F (qk, pk, t).

dF

dt
=

∂F

∂t
+
∑
k

(
∂F

∂qk

∂qk
∂t

+
∂F

∂pk

∂pk
∂t

)
=

∂F

∂t
+ [F,H]PB, (8.11)

where

[F,H]PB =
∑
k

(
∂F

∂qk

∂H

∂pk
− ∂H

∂qk

∂F

∂pk

)
(8.12)

is the Poisson Bracket.

8.1.2 The classical fields

From a discrete mechanical system, it is possible to go to a continuous
system when the number of degrees of freedom becomes infinite. Consider
a classical field ψ(x, t) which is continuous and described by an infinite set
of parameters x and t. The Lagrangian formalism can be extended to the
fields and the variational principle can be incorporated in an analogous
manner by introducing certain modifications.

1. Since the field ψ(x, t) depends on the continuous variable x, we have
to invoke the concept of Lagrangian density.

2. The theory can be made relativistically invariant by treating both
x and t coordinates on equal footing. This can be done by using
various metrics but we find it more convenient to use the metric
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1,−1,−1,−1 instead of the Minkowski space3, with the time coor-
dinate x0 = ct. By this procedure, we make all the four coordinates
of the same dimension of length.

Let us start with the Lagrangian density L .

L

(
ψρ,

∂ψρ
∂xµ

,x

)
≡ L (ψρ, ψρ,µ,x) ,

where, for brevity, a notation ψρ,µ is used to denote
∂ψρ
∂xµ

. The Lagrangian
density is a function of field functions ψρ, its first order derivatives and
the space-time coordinates (x : x0 = ct, x1, x2, x3). It is important that
L should not depend on second and higher order derivatives of ψρ.

The Lagrangian and the action integral are given by

L =

∫
L (ψρ, ψρ,µ,x) d3x; (8.13)

A =

∫
V

L (ψρ, ψρ,µ,x) d4x; (8.14)

where

d4x = dx0dx1dx2dx3 = cdtdxdydz,

and V is a certain domain in space-time, bounded by a hypersurface S.
According to the principle of least action, the variation δA in A for
arbitrary domains V is zero for the variations of ψρ(x).

ψρ(x) −→ ψρ(x) + δψρ(x),

where δψρ(x) is an arbitrary infinitesimal variation of the first order,
which is continuous and differentiable and vanishes on the boundary S of
V , i.e..

δψρ(x) = 0, on the surface S of V . (8.15)

3The Minkowski space is a natural extension of the ordinary three dimensional
Cartesian space with which we are familiar, to the four dimensional space-time which is
required for any theory that includes the special theory of relativity. This avoids the use
of metric tensor and the artificial distinction between the covariant and contravariant
quantities. However this is not possible for the treatment of the general theory of
relativity with the concept of curved space. So, many authors prefer to use the metric
1,−1,−1,−1 with the accompanying distinction between covariant and contravariant
quantities.
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This causes a change in the derivative.

∂ψρ
∂xµ

−→ ∂ψρ
∂xµ

+
∂

∂xµ
δψρ.

Thus

δA =

∫
V

∑
ρ

∂L

∂ψρ
δψρ +

∑
µ

∂L

∂
∂ψρ
∂xµ

∂

∂xµ
δψρ

 d4x = 0. (8.16)

Integrating the second term in the curly brackets by parts, we get

∫
V

∂L

∂
∂ψρ
∂xµ

∂

∂xµ
δψρd

4x =
∂L

∂
∂ψρ
∂xµ

δψρ

∣∣∣∣∣∣
S

−
∫
V

∂

∂xµ

∂L

∂
∂ψρ
∂xµ

δψρd
4x. (8.17)

The first term on the right hand side of Eq. (8.17) vanishes because of
the boundary condition (8.15) and hence the variational principle leads
to the result

δA =

∫
V

∑
ρ

∂L

∂ψρ
−
∑
µ

∂

∂xµ

∂L

∂
∂ψρ
∂xµ

 δψρd
4x = 0. (8.18)

Since this equation holds for arbitrary δψρ and also valid for arbitrary
domain V , the resulting relations

∂L

∂ψρ
−
∑
µ

∂

∂xµ

∂L

∂
∂ψρ
∂xµ

= 0, ρ = 1, 2, . . . , n, (8.19)

which are analogous to the Euler-Lagrange equations (8.5) are obtained.
These equations, in turn, lead to the field equations. Since L does not
involve derivatives of ψρ of order higher than the first, the resulting field
equations will be utmost of second order.

One could, in principle, consider field equations that are not derivable
from a variational principle, just as in mechanics we can have systems
with frictional and dissipative forces for which equations of motion can-
not be so obtained. Non-conservative forces, like friction, appear at a
macroscopic level since we wish to neglect microscopic complications. So,
at the microscopic level, the fundamental laws can be put in the form of
the principle of least action.
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Using the short-hand notation, the Euler-Lagrange Eq. (8.19) can be
rewritten as

∂L

∂ψρ
− ∂µ

∂L

∂(∂µψρ)
= 0, ρ = 1, 2, . . . , n, (8.20)

with the convention that a summation is to be made on the repeated
indices.

The conjugate momentum density Π(x) and the Hamiltonian density
H (x) are obtained in a way, analogous to Eqs. (8.6) and (8.9).

Π(x) =
∂L

∂ψ̇
. (8.21)

H (x) = Π(x)ψ̇(x)−L . (8.22)

8.2 Quantization of the field

The transition from the classical field theory to the quantum field theory
is made by postulating the field variables ψ and Π as field operators and
prescribing certain algebraic relations between them. The prescription of
these algebraic relations (commutators or anticommutators) are known as
the second quantization.

It may be recalled that some of the field equations, for example, the
Schrödinger equation, the Klein-Gordon equation and the Dirac equation
were obtained earlier by treating the dynamical variables x and p as
operators obeying certain commutation relations. That is known as the
first quantization. Since in quantum field theory, the field functions are
treated as operators and certain algebraic relations are postulated between
them for the second time, this is known as the second quantization.

The quantization of the field results in the description of the field in
terms of “particles” or more precisely, “the field quanta” which are the
carriers of energy, momentum and charge of the field. Let us illustrate
the method of quantization by considering the Schrödinger field. It is a
non-relativistic field and it allows the quantization procedure by choosing
either the commutation relations or anticommutation relations between
the field operators. Later, we shall see that in the case of relativistic
fields such as the Klein-Gordon field or the Dirac field, only one of them
is admissible.



200 Textbook of Relativistic Quantum Physics

8.2.1 The Schrödinger field

Let us consider the Schrödinger field which satisfies the field equation

i~
dψ

dt
+

~2

2m
∇2ψ − V ψ = 0. (8.23)

Quantum mechanics treats Eq. (8.23) as the equation of motion of a
particle of mass m moving in an external potential V . Here, we treat it as
a classical field equation which, when quantized, will yield an assembly of
a large number indistinguishable particles. Since this is the second time
that quantization is done, this is known as the second quantization. It
may be recalled that Eq. (8.23) has been obtained earlier by treating
the dynamical variables x and p as operators obeying the commutation
relation [x, px]− = i~; which is known as the first quantization.

The Lagrangian density for the Schrödinger field is given by

L S = i~ψ∗ψ̇ − ~2

2m
∇ψ∗ ·∇ψ − V ψ∗ψ, (8.24)

which, when substituted in the Euler-Lagrange Equation

∂L

∂ψ
−∇ · ∂L

∂(∇ψ)
− ∂

∂t

(
∂L

∂ψ̇

)
= 0 (8.25)

yields Eq. (8.23). Equation (8.25) is the same as Eq. (8.20) but given in
the expanded form, separating the space and time components.

The conjugate field Π(x, t) is given by

Π(x, t) =
∂L S

∂ψ̇
= i~ψ∗(x, t). (8.26)

The Hamiltonian density H and the Hamiltonian H are given by

H = Πψ̇ −L S =
~2

2m
∇ψ∗ ·∇ψ − V ψ∗ψ : (8.27)

H =

∫
V

H d3x =

∫
V

(
~2

2m
∇ψ∗ ·∇ψ − V ψ∗ψ

)
d3x, (8.28)

where the suffix V on the integral denotes the volume of integration, over
which the field extends.
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Quantization

The quantization of the Schrödinger field can be done by expanding the
field operator ψ in terms of the complete set of eigenfunctions uk(x) of
the field equation (8.23). This is known as the Fourier decomposition of
the field into its normal modes.

ψ(x, t) =
∑
k

ak(t)uk(x), (8.29)

where ak(t) is the Fourier coefficient which is interpreted as the annihi-
lation operator of the field quantum with momentum k. The functions
uk(x) satisfy the following relations:∫

u∗k(x)ul(x)d3x = δkl; (8.30)∑
k

uk(x)u∗k(x
′) = δ(x− x′); (8.31)

and they are the single particle eigenfunctions of the Hamiltonian

HP = − ~2

2m
∇2 + V,

with eigenvalue εk.
HPuk(x) = εkuk(x).

The Hermitian conjugate of ψ is

ψ†(x, t) =
∑
k

a†k(t)u
∗
k(x).

The quantization is done by postulating certain algebraic relations be-
tween the field operators ψ and ψ† or alternatively between the operators
ak(t) and a†l (t).

In case of the Schrödinger field, which is a non-relativistic field, it is
possible to choose commutation relations or anticommutation relations4

between ak and a†k. The first one corresponds to a system of Bosons and
the second one corresponds to a system of Fermions.

4The square brackets are used to denote the commutation relation and the curly
brackets denote the anticommutation relation.

[ak, a
†
l ]− = aka

†
l − a

†
l ak = δkl; {ak, a†l }+ = aka

†
l + a†l ak = δkl.
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8.2.2 Quantization into Bosons

Let us postulate the following commutation rules for the field operator
ψ(x, t) and its conjugate momentum Π(x, t) defined by Eq. (8.26):

[ψ(x, t),Π(x′, t)]− = i~δ(x− x′) (8.32)

[ψ(x, t), ψ(x′, t)]− = 0 = [Π(x, t),Π(x′, t)]− (8.33)

This is analogous to the Heisenberg commutation relations used in Quan-
tum Mechanics for x and p. This, in turn, leads to the commutation
relations between the Fourier coefficients ak, a

†
k on using the expansion

(8.29).

[ak, a
†
l ]− = δkl; (8.34)

[ak, al]− = [a†k, a
†
l ]− = 0; (8.35)

where all the operators refer to the same time. The operators ak and
a†k are called the annihilation and creation operators of the field quanta.
The entire description of the system – its state vector, the number and
energy of the system and the effects of the operators on the system – can
hereafter be studied in terms of these operators.

1. The number operator Nk is an Hermitian operator

Nk = a†kak, (8.36)

with eigenvalues nk = 0, 1, . . . ,∞.

2. The state vector is better described in the occupation number rep-
resentation, better known as the Fock space, giving the number of
quanta in each state.

|n1, n2, . . . , nk, . . .〉 = c (a†1)n1(a†2)n2 . . . (a†k)
nk . . . |0〉,

with

c =
1

(n1!n2! . . . nk! . . .)1/2
.

The vacuum state |0〉 is defined by

Nk|0〉 = 0, for all k.
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3. The effect of these operators on the state vector is given below:

ak |n1, n2, . . . , nk, . . .〉 =
√
nk |n1, n2, . . . , nk − 1, . . .〉 ; (8.37)

a†k |n1, n2, . . . , nk, . . .〉 =
√
nk + 1 |n1, n2, . . . , nk + 1, . . .〉 ;(8.38)

Nk |n1, n2, . . . , nk, . . .〉 = nk |n1, n2, . . . , nk, . . .〉 . (8.39)

4. The Hamiltonian of the system and its energy are given by

H =
∑
kl

a†kal

∫
V

(
~2

2m
∇u∗k ·∇ul + V u∗kul

)
d3x (8.40)

=
∑
k

Nkεk. (8.41)

The total energy of the field in the state |n1, n2, . . . , nk, . . .〉 is given
by

E =
∑
k

nkεk.

Since the given state uk can be occupied by any number of particles,
the field represents an assembly of Bosons.

8.2.3 Quantization into Fermions

For a system of Fermions, the exclusion principle restricts the occupation
number nk of a particular state to 0 or 1. It has been shown by Jordan
and Wigner5 that this condition would be satisfied if the commutation
relations (8.34) and (8.35) are replaced by the anticommutation relations
given below.

{ak, a†l }+ = δkl; (8.42)

{ak, al}+ = 0 = {a†k, a
†
l }+. (8.43)

All the operators refer to the same time. Besides, from Eq. (8.43), we
obtain

akak = 0 = a†ka
†
k, (8.44)

such that

N2
k = a†kaka

†
kak = a†k(1− a

†
kak)ak = Nk, (8.45)

5P. Jordan and E. P. Wigner, Z. Physik, 47, 631 (1928).
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which, in turn, yields the relation

Nk(Nk − 1) = 0. (8.46)

This condition restricts the eigenvalue nk of Nk to

nk = 0, 1. (8.47)

The following results follow from the above relations.

|n1, n2, . . . , nk, . . .〉 = (a†1)n1(a†2)n2 . . . (a†k)
nk . . . |0〉; (8.48)

ak |n1, n2, . . . , nk, . . .〉 = (−1)Sk nk |n1, n2, . . . , nk − 1, . . .〉 ; (8.49)

a†k |n1, n2, . . . , nk, . . .〉 = (−1)Sk (1− nk) |n1, n2, . . . , nk + 1, . . .〉 ;(8.50)

Nk |n1, n2, . . . , nk, . . .〉 = nk |n1, n2, . . . , nk, . . .〉 ; (8.51)

with

Sk =
k−1∑
r=1

nr.

Eqs. (8.49) and (8.50) state that the annihilation operator acting on
an empty state or the creation operator acting on a filled state yields zero.

Since, for the Fermions, nk can assume only two values 0 and 1, a 2×2
matrix representation can be given to the occupation number operatorNk.

Nk =

[
0 0
0 1

]
.

Consequently, the matrix representation for the annihilation and creation
operators become

ak =

[
0 1
0 0

]
; a†k =

[
0 0
1 0

]
.

The Hamiltonian, the total energy and the total number of particles of a
system of Fermions that the field represents are given by

H =
∑
k

Nkεk; E =
∑
k

nkεk; N =
∑
k

nk.

Since the total number operator N =
∑

kNk commutes with the Hamil-
tonian,

[N,H] =
∑
kl

[Nk, Nl]εl = 0,
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it follows that the total number of Fermions in the field is conserved.
It can be shown that the anticommutation relations between the anni-

hilation and creation operators for the Fermion field arise from the anti-
commutation relations between the field operator ψ(x, t) and its conjugate
momentum Π(x, t).

{ψ(x, t),Π(x′, t)}+ = i~δ(x− x′) (8.52)

{ψ(x, t), ψ(x′, t)}+ = 0 = {Π(x, t),Π(x′, t)}+ (8.53)

This anticommutation relations have no classical analogue.
We can also represent the particle number operator N in terms of the

field variable ψ(x, t), using the relation (8.29).

N =
∑
k

a†kak =
∑
k

∫
V
uk(x)ψ†(x, t)u∗k(x

′)ψ(x′, t)d3xd3x′

=

∫
V
δ(x− x′)ψ†(x, t)ψ(x′, t)d3xd3x′, summing over k

=

∫
V
ψ†(x, t)ψ(x, t)d3x. (8.54)

8.3 Relativistic fields

In particle mechanics, the space and time coordinates play different roles.
The space coordinates are the mechanical variables whereas the time is
a parameter. But in the case of classical fields, the space and time co-
ordinates are treated similarly and they are the parameters specifying
the space-time continuum, with which the field variables are defined.
This facilitates the relativistically covariant formulation of the classical
fields which are commonly known as relativistic fields that are manifestly
Lorentz covariant.

With the introduction of the fourth coordinate x0 = ct in the place
of time coordinate, the action integral A defined by Eq. (8.14) changes
only by a multiplicative factor but does not affect the formulation of the
Hamilton’s action principle which yields the same Lagrange equations of
motion (8.19). Please note that the only term

∂

∂xµ

∂L

∂
(
∂L
∂xµ

) ,
that depends on xµ in Eq. (8.19) is not affected by the change of scale of
any xµ.
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In relativistic field theory, we should expect that all the quantities that
define the field and the associated equations should be covariant under
Lorentz transformation. This means that the quantities should be either
world scalars or world vectors or world tensors. The action integral A is
a world scalar. Similarly, the Lagrangian density L and the Hamiltonian
density H are world scalars. The four-dimensional volume element d4x
is invariant under Lorentz transformation. Let us show that the second
rank tensor constructed from the Lagrangian density using the Lagrange
equations of motion is a world tensor of second rank, the components of
which yields the momentum and energy density of the field.

Given the Lagrangian density

L (ψ,
∂ψ

∂xµ
, xµ),

the total derivative of the Lagrangian density is given by

dL

dxµ
=
∂L

∂ψ

∂ψ

∂xµ
+

∂L

∂
(
∂ψ
∂xν

) ∂

∂xµ

(
∂ψ

∂xν

)
+
∂L

∂xµ
. (8.55)

From Euler-Lagrange equation (8.19), we obtain

∂L

∂ψ
=

∂

∂xν

∂L

∂
(
∂ψ
∂xν

)
. Substituting this into Eq. (8.55), we get

dL

dxµ
=

 ∂

∂xν

∂L

∂
(
∂ψ
∂xν

)
 ∂ψ

∂xµ
+

∂L

∂
(
∂ψ
∂xν

) ∂

∂xµ

(
∂ψ

∂xν

)
+
∂L

∂xµ

=
d

dxν

 ∂L

∂
(
∂ψ
∂xν

) ∂ψ

∂xµ

+
∂L

∂xµ
. (8.56)

On rearrangement, we get

d

dxν

 ∂L

∂
(
∂ψ
∂xν

) ∂ψ

∂xµ
−L δµν

 = −∂L

∂xµ
. (8.57)

The quantity within the curly bracket is a second rank tensor, denoted
by the symbol Tµν .

Tµν =
∂L

∂
(
∂ψ
∂xν

) ∂ψ

∂xµ
−L δµν . (8.58)
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If the Lagrangian density L does not depend explicitly on xµ, i.e. if

∂L

∂xµ
= 0,

then L represents a free field. There are no sources or sinks or any
interaction with other fields or particles. It follows from Eq. (8.57) that
for a free field ∑

ν

dTµν
dxν

= 0. (8.59)

It can easily be verified that

T00 =
∂L

∂
(
∂ψ
∂x0

) ∂ψ
∂x0
−L

=
∂L

∂ψ̇
ψ̇ −L . (8.60)

This is the energy density H (x) of the free field as can be seen from Eqs.
(8.21) and (8.22).

The other components of the tensor are

Tk0 =
∂L

∂
(
∂ψ
∂x0

) ∂ψ
∂xk

, (k = 1, 2, 3)

= c
∂L

∂ψ̇

∂ψ

∂xk

= cΠ
∂ψ

∂xk
, using Eq. (8.21). (8.61)

Defining the momentum density P by

Pk = Π
∂ψ

∂xk
, (8.62)

we find that

Tk0 = cPk. (8.63)

Review Questions

8.1 Discuss briefly the Lagrangian-Hamiltonian formalism in classical mechan-
ics and deduce the Euler-Lagrange equations of motion and also Hamilton’s
canonical equations of motion. Explain how these concepts can be applied
to the classical fields.
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8.2 What is meant by the second quantization? Discuss how the Schrödinger
field can be quantized to yield a system of Bosons. Define the number
operator and express the Hamiltonian in terms of the number operator.

8.3 Discuss how the Schrödinger equation can be quantized to yield a system
of Fermions. Show that the number operator can assume only two values,
0 or 1. Obtain an expression for the Hamiltonian in terms of the number
operator.

8.4 What are the features that a relativistic field should exhibit? Given the
Lagrangian density, construct a second rank tensor using Euler-Lagrange
equations of motion and show that the components of the second rank
tensor yield the momentum and energy density of the field.

Problems

8.1 Show that in the case of motion of a single particle, the principle of least
action yields the second law of Newton.

8.2 Show that the Lagrangian density for the Schrödinger field which obeys
Schrödinger equation is

L S = i~φ∗φ̇− ~2

2m
∇φ∗ ·∇φ− V φ∗φ.

8.3 Given the Lagrangian density

L =
1

2

{
φ̇2 − (∇φ)2 −m2φ2

}
,

deduce the equation for the field φ that the Lagrangian density represents.

Solutions to Problems

8.1 Newton’s second law states that a point particle of mass m moving in a

potential field V (x) experiences a force F resulting in an acceleration d2x
dt2

of the particle.

m
d2x

dt2
= F = −dV (x)

dt
.

The Lagrangian L of the particle is given by

L = T − V =
1

2
m

(
dx

dt

)2

− V (x),

where T is the kinetic energy. The action A is defined by

A =

∫ t2

t1

L(x, ẋ)dt,



8. Elements of Quantum Field Theory 209

x

t

•

•

A

B

0

Figure 8.1: Multiple paths available for the particle between two space-time
points A and B, of which the particle chooses one for which the action A is
minimal.

where the integral is taken over the entire path of the particle from time
t1 to t2 as shown in Fig. 8.1. There is an infinite number of possible paths
for the particle but what the actual path that the particle will take is given
by the principle of least action. In other words, the particle chooses a path
for which the action A is minimum.

Consider a variation in the path

x(t)→ x′(t) = x(t) + a(t), a << x.

Since the end points of the path are fixed,

a(t1) = a(t2) = 0.

On the substitution x→ x′, the action A becomes

A → A ′ =

∫ t2

t1

[
1
2m(ẋ+ ȧ)2 − V (x+ a)

]
dt

=

∫ t2

t1

[
1
2mẋ

2 +mẋȧ− {V (x) + aV ′(x)}
]
dt+O(a2)

= A +

∫ t2

t1

[mẋȧ− aV ′(x)]dt

= A + δA ,

where

δA =

∫ t2

t1

[mẋȧ− aV ′(x)]dt, V ′(x) =
dV (x)

dx
.

If A is a minimum under the variation in x, then δA = 0. Integrating
the first term in δA by parts, we get∫ t2

t1

ẋȧdt = ẋa|t2t1 −
∫ t2

t1

aẍdt = −
∫ t2

t1

aẍdt,
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since a(t1) = a(t2) = 0 because of the fixed end points. Thus we get

δA = −
∫ t2

t1

[maẍ+ aV ′(x)]dt = 0,

which is satisfied if
mẍ = −V ′(x).

Thus we have deduced Newton’s second law of motion from the principle
of least action.

8.2 Given the Lagrangian density L S of the field, find the field equation which
satisfies the Euler-Lagrange equation (8.19).

Let us write explicitly the Euler-Lagrange equation.

∂L

∂φ
−

3∑
µ=0

∂

∂xµ
∂L

∂
(
∂φ
∂xµ

) = 0

or
∂L

∂φ
− ∂

∂t

∂L

∂
(
∂φ
∂t

) − 3∑
k=1

∂

∂xk

∂L

∂
(
∂φ
∂xk

) = 0. (8.64)

Given the Lagrangian density

L s = i~φ∗φ̇− ~2

2m
∇φ∗ ·∇φ− V φ8φ,

we find

∂L S

∂φ
= −V φ∗

∂L S

∂∇φ = − ~2

2m
∇φ∗, ∇ ·

(
∂L S

∂∇φ

)
= − ~2

2m
∇2φ∗. (8.65)

∂L S

∂φ̇
= i~φ∗,

∂

∂t

(
∂L S

∂φ̇

)
= i~

∂φ∗

∂t

Substituting (8.65) into (8.64), we get

− ~2

2m
∇2φ∗ + V φ∗ + i~

∂φ∗

∂t
= 0,

the complex conjugate of which is the Schrödinger equation.

− ~2

2m
∇2φ+ V φ− i~∂φ

∂t
= 0,

8.3 Given the Lagrangian density

L =
1

2

{
φ̇2 − (∇φ)2 −m2φ2

}
,
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it can be written in the four-component space-time notation.

L =
1

2

∑
µ

(
∂φ

∂xµ

)2

− 1

2
m2φ2.

Since the Lagrangian density is given, we need to find the field equation
that satisfies the Euler-Lagrangian equation.

∂L

∂φ
−
∑
µ

∂

∂xµ
∂L

∂ ∂φ
∂xµ

= 0.

Since

∂L

∂φ
= −m2φ

∂L

∂ ∂φ
∂xµ

=
∂φ

∂xµ

∂

∂xµ
∂L

∂ ∂φ
∂xµ

=
∂2φ

∂xµ2

Substituting these values in Euler-lagrange equation, we get the field equa-
tion which can be identified as the Klein-Gordon equation

(2 +m2)φ(x) = 0,

where

2 =
∂

∂xµ
∂

∂xµ
=

∂2

∂t2
−∇2,

in natural units.



Chapter 9

The Scalar Fields

The well-known equation for the scalar field is the Klein-Gordon (K-G)
equation. The Klein-Gordon equation is a relativistic wave equation, ob-
tained earlier for a single particle but it was initially unacceptable for the
following two reasons. It admitted not only negative energy states but
also negative probability densities. The latter was a more serious defect
and was physically unacceptable. Only when Pauli and Weisskopf1 found
a way out and reinterpreted the Klein-Gordon equation as a field equa-
tion in the same sense as Maxwell’s equations for electromagnetic field,
the interest revived and became a subject of intense study.

Klein-Gordon equations are used to describe particles of spin 0 such as
π mesons and K mesons. Real i.e. Hermitian fields represent uncharged
particles and complex (non-Hermitian) fields represent charged particles.

9.1 One-component real field

First let us write down the K-G equation in different forms as are found
in the literature.

(2 + κ2)Φ(x) = 0; (∂µ∂µ + κ2)Φ(x) = 0; (9.1)

where

2 =
1

c2

∂2

∂t2
−∇2. (9.2)

1W. Pauli and V. Weisskopf, Helv. Phys. Acta., 7, 709 (1934).

212
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The symbols ∂µ, ∂µ and κ denote

∂µ =
∂

∂xµ
; ∂µ =

∂

∂xµ
; (µ = 0, 1, 2, 3) (9.3)

κ =
mc

~
. (Inverse Compton wavelength of the particle) (9.4)

Hereafter, we shall use natural units (~ = c = 1). In natural units,
the K-G equation (9.1) can be rewritten as

(∂µ∂µ +m2)Φ(x) = 0. (9.5)

The plane wave solution of K-G Eq. (∂µ∂µ +m2)uk(x) = 0 is

uk(x) =
1√
V

1√
2ωk

e−ik·x, (9.6)

where V is the quantization volume and

k · x = k0x0 − k · x = ωkt− k · x, (9.7)

k2 = kµkµ = ω2
k − k2 = m2, (9.8)

ω2
k = k2 +m2. (9.9)

We use the convention of representing the four-vectors by bold up-right
letters (k,x), three vectors by bold italics (k,x) and the scalars by ordi-
nary italics (k, x).

9.1.1 Fourier decomposition of the field

The field operator Φ(x) in Eq. (9.5) is expanded in terms of the complete
set of uk(x), defined by Eq. (9.6).

Φ(x) =
∑
k

(
akuk(x) + a†ku

∗
k(x)

)
=

1√
V

∑
k

1√
2ωk

(
a(k) e−ik·x + a†(k) eik·x

)
(9.10)

The second term on the right hand side of Eq. (9.10) is the hermitian
conjugate of the first term and is included in order to make the field
function Φ(x) real. The expansion coefficients2 ak and a†k will have to
be interpreted as the annihilation and creation operators and the field

2The expansion coefficients are denoted either by ak, a
†
k or by a(k), a†(k).
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operator Φ(x) represents an assembly of particles. More often, Eq. (9.10)
is split into two terms

Φ(x) = Φ+(x) + Φ−(x), (9.11)

where Φ+(x) which carries the annihilation operator ak corresponds to the
positive energy part of the decomposition of the field function Φ(x) and

Φ−(x) which carries the creation operator a†k corresponds to the negative
energy part of the decomposition of the field function Φ(x). Using the
prescription

1√
V

∑
k

−→ 1

(2π)3/2

∫
d3k.

we can make a transition from the discrete values of k to continuous values
and write down explicitly Φ+(x) and Φ−(x).

Φ+(x) =
1

(2π)3/2

∫
k0>0

d3k√
2ωk

a(k)e−ik·x; (9.12)

Φ−(x) =
1

(2π)3/2

∫
k0>0

d3k√
2ωk

a†(k)eik·x. (9.13)

The splitting of the field function Φ into two parts Φ+(x) and Φ−(x) that
correspond to positive and negative frequency parts, is introduced here,
since we will have many occasions to use them at a later stage in our
discussion.

Since we are using the Lagrangian formalism, the Lagrangian density
will play a central role and so let us conjecture the Lagrangian density
LKG that will satisfy the Euler-Lagrange equation and yield the Klein-
Gordon equation.

LKG(x) =
1

2

{∑
µ

(
∂Φ

∂xµ

)2

−m2Φ2

}

=
1

2

(
∂µΦ(x) ∂µΦ(x)−m2Φ2(x)

)
. (9.14)

The repeated index µ implies summation over µ. Given the above La-
grangian density, one can find the conjugate momentum density Π(x)
and the Hamiltonian density H (x) by the established procedure.

Π(x) =
∂LKG

∂Φ̇
= ∂0Φ = Φ̇. (9.15)
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H (x) = Π(x)Φ̇(x)−LKG(x)

= ∂0Φ ∂0Φ− 1

2

(
∂µΦ(x) ∂µΦ(x)−m2Φ2(x)

)
=

1

2

{
Φ̇2 + (∇Φ)2 +m2Φ2

}
. (9.16)

In Eq. (9.16), ∇ denotes the ordinary three-dimensional gradient. The
energy density as given by Eq. (9.16) is a positive-definite quantity as
should be expected.

The total energy of the field is3

H =

∫
H d3x =

∫ (
ΠΦ̇−LKG

)
d3x

=

∫ (
∂L

∂Φ̇
Φ̇−L

)
d3x =

∫  ∂L

∂
(
∂Φ
∂x0

) ∂Φ

∂x0
−L

 d3x

=

∫
T00 d

3x, (9.17)

where T00 is the (0,0) component of the canonical energy momentum
tensor Tµν defined earlier in Eq. (8.58).

Tµν =
∂L

∂
(
∂Φ
∂xν

) ∂Φ

∂xµ
−L δµν . (9.18)

Using the Fourier decomposition (9.10) of the field, the conjugate mo-
mentum density Π(x) given by Eq. (9.15) can be written in the expanded
form using annihilation and creation operators a(k) and a†(k).

Π(x) = Φ̇(x) =
1√
V

∑
k

−iωk√
2ωk

(
a(k) e−ik·x − a†(k) eik·x

)
. (9.19)

Since the commutation relations between Φ and Π and the Hamilto-
nian H do not depend on time, let us choose t = 0. Then,

Φ(x, 0) =
1√
V

∑
k

1√
2ωk

(
a(k) eik·x + a†(k) e−ik·x

)
. (9.20)

3Since we are considering only the K-G field in his chapter, we will hereafter omit
the suffix KG for the L .
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A transition from the discrete values of k to continuous values of k can
be made by using the prescription (vide Solved Problem (9.4))

1√
V

∑
k

−→ 1

(2π)3/2

∫
d3k.

Φ(x, 0) =
1

(2π)3/2

∫
d3k√
2ωk

(
a(k) eik·x + a†(k) e−ik·x

)
. (9.21)

Π(x, 0) =
1

(2π)3/2

∫
d3k√
2ωk

(−iωk)
(
a(k) eik·x − a†(k) e−ik·x

)
.(9.22)

Taking the Fourier inversions of (9.21) and (9.22), we obtain (vide Solved
Problem (9.2))

a(k) =
1

(2π)3/2

∫
d3x√
2ωk

e−ik·x {ωkΦ(x) + iΠ(x)} . (9.23)

a†(k) =
1

(2π)3/2

∫
d3x√
2ωk

eik·x {ωkΦ(x)− iΠ(x)} . (9.24)

9.1.2 Quantization of the scalar field

The scalar field is quantized by invoking the equal-time commutation
relations between the field function Φ(x) and its conjugate momentum
function Π(x).

[Φ(x, t),Π(x′, t)]− = i~ δ(x− x′) = iδ(x− x′); (9.25)

[Φ(x, t),Φ(x′, t)]− = [Π(x, t),Π(x′, t)]− = 0; (9.26)

They, in turn, yield the commutation relations between the annihilation
and creation operators. (vide Solved Problem (9.3))

[a(k), a†(k′)]− = δk,k′ ; (9.27)

[a(k), a(k′)]− = [a†(k), a†(k′)]− = 0. (9.28)

There is a very close analogy between the simple harmonic oscillator4

and the field. The operators a(k) and a†(k) are interpreted as the anni-
hilation and creation operators for a field quantum with momentum k.
The number operator N(k) is defined as

N(k) = a†(k)a(k), (9.29)

4The reader is referred to: V. Devanathan, Quantum Mechanics, Sec. 6.4.3, Narosa
Publishing House, New Delhi (2005), for further details on simple harmonic oscillator.
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which operating on the basic state in the Fock space

|n1, n2, n3, · · · , nk, · · · 〉 (9.30)

yields the number of quanta associated with the momentum k.

N(k)|n1, n2, n3, · · · , nk, · · · 〉 = nk|n1, n2, n3, · · · , nk, · · · 〉. (9.31)

Using Eq. (9.16), it can be shown that the total Hamiltonian H is (vide
Solved Problem (9.8))

H =

∫
H d3x =

1

2

∫ (
Π2 + (∇Φ)2 +m2Φ2

)
d3x

=
1

2

∑
k

ωk

(
a†(k)a(k) + a(k)a†(k)

)
=

∑
k

ωk

(
a†(k)a(k) +

1

2

)
. (9.32)

In the last step, the commutation relation (9.27) is used. The ground state
is one with nk = 0 for all k and we should expect the ground state energy
to be zero. But on the other hand, it becomes infinity E =

∑
k

1
2ωk.

The second quantized Klein-Gordon field thus gives a description of an
assembly of infinitely many identical non-interacting particles of the same
mass. They are not only spinless but also uncharged. That the associated
quanta are uncharged follows from the fact that the four-vector current
density corresponding to the Hermitian field is zero.

9.1.3 Ground state and normal ordering

The ground state of the field which is called the vacuum is defined as

a(k)|0〉 = 0, for all k. (9.33)

Assuming the normalization of the ground state

〈0|0〉 = 1, (9.34)

we find the expectation value of the total Hamiltonian in the ground state
to be

〈0|H|0〉 =
1

2

∞∑
k=0

ωk, (9.35)
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which is infinite. This is because, we have one oscillator for each value
of momentum and we have an infinite number of such oscillators, each
having a zero point energy. Thus the ground state energy becomes infi-
nite. Now, let us redefine the zero of energy in such a way as to make
the ground state energy zero. This can be done by a simple prescription
called normal ordering. Whenever, we have a product of annihilation and
creation operators, simply arrange all the annihilation operators to the
right of all creation operators as if the commutators were zero. This is
called normal ordering. Once we have done this arrangement, then the
operators are treated once again as operators with the usual commutation
relations. Using this prescription of normal ordering, we find the expec-
tation value of the normal-ordered Hamiltonian denoted by the symbol
: H : or N() to be

〈Ψ| : H : |Ψ〉 =
∑
k

ωk〈Ψ|a†(k)a(k)|Ψ〉 =
∑
k

ωk|a(k)|Ψ〉|2. (9.36)

The energy thus obtained is always positive and the expectation value of
the energy of the vacuum now becomes

〈0| : H : |0〉 = 0, (9.37)

so that it corresponds to the ground state energy which is zero.

9.2 Complex scalar field

Any complex scalar field can be represented by two independent fields,
one corresponding to the real part and the other corresponding to the
imaginary part or alternatively by the complex field Φ(x) and its complex
conjugate Φ∗(x), each of which obey the Klein-Gordon equation as given
below: (

∂µ∂µ +m2
)

Φ(x) = 0;
(
∂µ∂µ +m2

)
Φ∗(x) = 0. (9.38)

The Lagrangian density for such a complex field is given by

L (x) = ∂µΦ(x) ∂µΦ∗(x)−m2Φ(x)Φ∗(x), (9.39)

where Φ(x) and Φ∗(x) are to be treated as independent functions which
can be treated as a linear combination of two independent real fields Φ1(x)
and Φ2(x).

Φ(x) =
1√
2

(Φ1(x) + iΦ2(x)) ; Φ∗(x) =
1√
2

(Φ1(x)− iΦ2(x)) . (9.40)



9. The Scalar Fields 219

Each of these fields obey the Klein-Gordon equation.(
∂µ∂µ +m2

)
Φr(x) = 0, r = 1, 2. (9.41)

The Lagrangian density for the complex field can also be written as the
sum of the Lagrangian densities of the two independent real fields Φ1 and
Φ2.

L =
1

2

2∑
r=1

(
∂µΦr ∂µΦr −m2Φr

)
, r = 1, 2. (9.42)

The conjugate momentum density of each field is given by

Πr(x) =
∂L

∂Φ̇r

= ∂0Φr = Φ̇r, r = 1, 2. (9.43)

The Hamiltonian density of the complex field is given by

H =
2∑
r=1

Πr(x)Φ̇r(x)−L (x), (9.44)

from which the total Hamiltonian H is obtained by performing the three-
dimensional space integration.

H =

∫
H d3x

=
2∑
r=1

{∫
∂0Φr ∂0Φr d

3x− 1

2

∫ (
∂µΦr ∂µΦr −m2

)
d3x

}
.(9.45)

As was done earlier for the real scalar field, we can do the Fourier decom-
position of the field for Φ1 and Φ2.

Φr(x) =
1√
V

∑
k

1√
2ωk

{
ar(k)e−ik·x + a†r(k)eik·x

}
, (9.46)

where the operators ar(k) and a†r(k) are the annihilation and creation
operators which obey the commutation relations[

ar(k), a†s(k
′)
]
−

= δrs δ(k − k′); (9.47)[
ar(k), as(k

′)
]
− = 0 =

[
a†r(k), a†s(k)

]
−
. (9.48)
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The commutators indicate that the field represents a system of bosons.
The complex scalar field represents two types of particles and this would
become clear by looking at the Fourier expansion of Φ using the relations
(9.40).

Φ(x) =
1√
V

∑
k

1√
2ωk

{
a(k)e−ik·x + b†(k)eik·x

}
, (9.49)

where

a(k) =
1√
2

(a1(k) + ia2(k)) , b(k) =
1√
2

(a1(k)− ia2(k)) . (9.50)

The operators a(k) and b(k) and their Hermitian conjugates satisfy the
commutation relations[

a(k), a†(k′)
]
−

=
[
b(k), b†(k′)

]
−

= δ(k − k′). (9.51)

All other commutators with different combinations vanish.
From Eq. (9.49), we can at once write down the Fourier expansion for

Φ∗(x).

Φ∗(x) =
1√
V

∑
k

1√
2ωk

{
a†(k)eik·x + b(k)e−ik·x

}
, (9.52)

A complex scalar field is, in fact, consists of two fields Φ1(x) and

Φ2(x) and a†1 and a†2 are the creation operators that produce the quanta
that correspond to these fields. It is clear that a complex scalar field
represents two different sets of particles. Instead of the fields Φ1(x) and
Φ2(x), we can as well choose Φ(x) and Φ∗(x). For the latter choice, a†

and b† are the creation operators for the field quanta that are described
by the fields Φ(x) and Φ∗(x). The latter choice is preferable since the
Lagrangian (9.39) is invariant under the transformation

Φ→ Φ eieα, Φ∗ → Φ∗ e−ieα. (9.53)

This transformation leads to the conservation of charge and current of the
fields.

9.2.1 Charge-current density

Define the four vector current jµ(x) by

jµ(x) = −ie
(
∂L

∂Φ,µ
Φ− ∂L

∂Φ∗,µ
Φ∗
)

= ie {(∂µΦ∗) Φ− (∂µΦ) Φ∗} . (9.54)
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Using the Klein-Gordon field Eqs. (9.38), we get

∂µj
µ(x) = iem2[Φ∗(x),Φ(x)]− = 0 (9.55)

The four-vector jµ(x) is to be interpreted as the charge-current density
four vector and j0 is the electric charge density.

The total charge of the field is

Q =

∫
j0(x)d3x

= e

∫
{(∂0Φ∗)Φ− (∂0Φ)Φ∗} d3x, using Eq. (9.54)

=
e

2

∑
kk′

[
{a(k′), a†(k)}+ − {b†(k), b(k′)}+

]
= e

∑
k

(N+(k)−N−(k)) , (9.56)

where

N+(k) = a†(k)a(k) and N−(k) = b†(k)b(k).

Note that Q = 0 if anticommutation relations (Fermi-Dirac statistics) are
used.

The total charge of the field is

Q = e
∑
k

(n+(k)− n−(k)) , (9.57)

with

n±(k) = 0, 1, 2, · · · ,∞.

Thus the operators a(k), a†(k), N+(k) denote the annihilation, cre-
ation and number operator for particle of electric charge e and the oper-
ators b(k), b†(k), N−(k) denote the corresponding operators for a particle
of charge −e. The total Hamiltonian is given by

H =
1

2

∑
k

ωk

2∑
r=1

{
ar(k), a†r(k)

}
+

≡ 1

2

∑
k

ωk

[{
a(k), a†(k)

}
+

+
{
b(k), b†(k)

}
+

]
=

∑
k

[N+(k) +N−(k)]ωk +H0, (9.58)
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with

H0 =
∑
k

ωkI.

The total field energy of the K-G field is

EKG = E+ + E−, (9.59)

where

E± =
∑
k

(
n±(k) +

1

2

)
ωk.

The total field energy would be zero if anticommutation relations are
used for annihilation and creation operators. This means that the Klein-
Gordon equation can be consistently quantized only by using the commu-
tation relations corresponding to Bose-Einstein statistics.

9.2.2 Particles and antiparticles

From Eq. (9.57), we find that the complex scalar field indicates that there
are two types of particles, one with charge +e and the other with charge
−e. Apart from the sign of the charge, both the particles have identical
mass and other properties. So, they have to be associated with the particle
and its antiparticle. This is a fundamental feature of relativistic quantum
field theory, which is fully supported by experiments.

As an example of particle-antiparticle pair, we can cite π+ and π−

mesons. They can be described by a complex Klein-Gordon field. For a
real field, the charge operator Q is identically zero and such a field can
describe π0 meson.

It is possible to extend the above consideration to other types of
charges, for instance, hypercharge. The invariance of Lagrangian den-
sity L under phase transformation similar to (9.53) will allow the con-
servation of hypercharge. This will allow the occurrence of particles and
antiparticles differing from each other in the sign of hypercharge. So, even
electrically neutral particle can have a distinguishable antiparticle as in

the case of neutral K0 and K
0
. They have opposite hypercharge Y = ±1

and they can be represented by a complex Klein-Gordon field. Although
electric charge is conserved in all types of interaction, hypercharge is con-
served in strong and electromagnetic interactions but violated in weak
interactions.
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9.3 The covariant commutation relations

In relativistic field theories, calculations can be performed in such a way
that the relativistic invariance of the theory can be exhibited at every
stage. This is made possible by the introduction of the Lorentz invariant
commutation relations.

The scalar field function Φ(x) can be written in a Lorentz invariant
way as

Φ(x) =
1

(2π)3/2

∫
k0>0

d3k√
2ωk

(
a(k)e−ik·x + a†(k)e+ik·x

)
= Φ+(x) + Φ−(x). (9.60)

The destruction operator a(k) has positive frequency dependence and
the creation operator a†(k) has negative frequency dependence. This
distinction is Lorentz invariant and allows an invariant decomposition of
Φ(x) into positive and negative frequency parts.

Φ+(x) =
1

(2π)3/2

∫
k0>0

d3k√
2ωk

a(k)e−ik·x, (9.61)

Φ−(x) =
1

(2π)3/2

∫
k0>0

d3k√
2ωk

a†(k)eik·x. (9.62)

It can be verified that

{Φ−(x)}† = Φ+(x).

Φ+(x) is a destruction operator and Φ−(x) is a creation operator. The
vacuum state |0〉 which has been characterized by a(k)|0〉 = 0 for all k
has now the property

Φ+(x)|0〉 = 0.

Let us now evaluate the commutator [Φ(x),Φ(x′)]− .

[Φ(x),Φ(x′)]−

= Φ(x)Φ(x′)− Φ(x′)Φ(x)

=
1

(2π)3/2

∫
k0>0

d3k√
2ωk

∫
k′0>0

d3k′√
2ωk′

×
{
[a(k), a†(k′)]−e

ik′·x′e−ik·x + [a†(k), a(k′)]−e
−ik′·x′eik·x

}
.(9.63)
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Using the commutation relations between the annihilation and creation
operators

[a(k), a†(k′)]− = δ(k − k′),
[a(k), a(k′)]− = [a†(k), a†(k′)]− = 0,

and integrating over d3k′, we get after replacing ωk by k0 (since ω2
k =

k2
0 = k2 +m2)

[Φ(x),Φ(x′)]− =
1

2(2π)3

∫
k0>0

d3k

k0

(
e−ik·(x−x′) − eik·(x−x′)

)
= i∆(x− x′), (9.64)

with

∆(x− x′) = − i

2(2π)3

∫
k0>0

d3k

k0

(
e−ik·(x−x′) − eik·(x−x′)

)
. (9.65)

Since
[Φ(x),Φ(x′)]− = −[Φ(x′),Φ(x)]−,

we get

∆(x− x′) = −∆(x′ − x). (9.66)

It can be shown that ∆(x− x′) satisfies the Klein-Gordon equation.

(2x + κ2)∆(x− x′) = 0. (9.67)

The two-point function ∆(x− x′) can be considered as the propagator of
the scalar field.

It can be shown that

[Φ+(x),Φ+(x′)]− = [Φ−(x),Φ−(x′)]− = 0. (9.68)

In a similar way, we can also find the commutators [Φ+(x),Φ−(x′)]− and
[Φ−(x),Φ+(x′)]−.

[Φ+(x),Φ−(x)]−

= Φ+(x)Φ−(x)− Φ−(x)Φ+(x)

=
1

(2π)3

∫
k0>0

d3k√
2ωk

∫
k′0>0

d3k′√
2ωk′

×
{
a(k)a†(k′)e−ik·xeik

′·x′ − a†(k′)a(k)eik
′·x′e−ik·x

}
.(9.69)
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Using the commutation relation

[a(k), a†(k′)]− = δ(k − k′),

and integrating over d3k′, we get after replacing ωk by k0

[Φ+(x),Φ−(x)]− =
1

(2π)3

∫
k0>0

d3k

2k0
e−ik·(x−x′)

= i∆+(x− x′). (9.70)

In a similar way, we get

[Φ−(x),Φ+(x′)]− = − 1

(2π)3

∫
k0>0

d3k

2k0
eik·(x−x′)

= i∆−(x− x′). (9.71)

Thus, we find

∆+(x− x′) + ∆−(x− x′) = ∆(x− x′). (9.72)

Likewise,

∆+(x− x′)−∆−(x− x′)

= − i

(2π)3

∫
k0>0

d3k

2k0

{
e−ik·(x−x′) + e+ik·(x−x′)

}
= − i

(2π)3

∫
k0>0

d3k

2k0
eik·(x−x

′)
{
e−ik0(x0−x′0) + e+ik0(x0−x′0)

}
= − i

(2π)3

∫
k0>0

d3k

2k0
eik·(x−x

′)2 cos k0(x0 − x′0)

= −i∆(1)(x− x′). (9.73)

From Eqs. (9.72) and (9.73), it follows that

∆+(x− x′) =
1

2

{
∆(x− x′)− i∆(1)(x− x′)

}
; (9.74)

∆−(x− x′) =
1

2

{
∆(x− x′) + i∆(1)(x− x′)

}
; (9.75)

The covariant commutation relations play a crucial role in treating
physical problems and performing calculations in a relativistically invari-
ant way.
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Review Questions

9.1 Write dowm the Klein-Gordon equation for a real scalar field and discuss
how it can be Fourier analyzed and quantized to show that it represents
an assembly of Bose particles.

9.2 Show that the ground state of the system that the Klein-Gordon field rep-
resents is of infinite energy and explain how this difficulty can be overcome
by normal ordering.

9.3 Show how the complex scalar field represents an assembly of charged par-
ticles whereas the real scalar field represents an assembly of uncharged
particles.

9.4 Find the following covariant commutation relations between the scalar
field functions at two different space-time points x and x′:

[Φ(x),Φ(x′)]−, [Φ+(x),Φ−(x′)]−, [Φ−(x),Φ+(x′)]−,

where Φ+ and Φ− denote the positive and negative frequency parts of the
field functions. Explain their physical significance.

Problems

9.1 Given the Lagrangian density

LKG(x) =
1

2

{∑
µ

(
∂Φ

∂xµ

)2

−m2Φ2

}
,

deduce the Klein-Gordon field equation.

9.2 Given the field function Φ(x) and the corresponding conjugate momentum
function Π(x) for the Klein-Gordon field

Φ(x) =
1

(2π)3/2

∫
d3k√
2ωk

(
a(k) eik·x + a†(k) e−ik·x

)
;

Π(x) =
1

(2π)3/2

∫
d3k√
2ωk

(−iωk)
(
a(k) eik·x − a†(k) e−ik·x

)
;

obtain, by Fourier inversion, expressions for annihilation and creation op-
erators a(k) and a†(k).

9.3 Show that the equal-time commutation relations

[Φ(x),Π(x′)]− = i~ δ(x− x′) = iδ(x− x′);

[Φ(x),Φ(x′)]− = [Π(x),Π(x′)]− = 0;

yield the commutation relations between the annihilation and creation
operators.

[a(k), a†(k′)]− = δk,k′ ;

[a(k), a(k′)]− = [a†(k), a†(k′)]− = 0.
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9.4 It is given that the prescription for going from discrete momentum to
continuous momentum in the Fourier expansion of the field operator is

1√
V

∑
k

−→ 1

(2π)3/2

∫
d3k.

Deduce the above prescription.

9.5 Show that the covariant commutation relation given by Eq. (9.64) vanishes
for equal times. Explain its physical significance.

9.6 Starting from the covariant commutation relation (9.64), deduce the canon-
ical commutation relation for equal times:

[Π(x, t), φ(x′, t)]− = −iδ(x− x′).

9.7 Demonstrate that the field function Φ(x) given by Eq. (9.60) is really
invariant under Lorentz transformation and the splitting of Φ(x) into pos-
itive and negative frequency parts Φ+(x) and Φ−(x) are also Lorentz in-
variant.

9.8 Given the Hamiltonian density H of the scalar field (Eq. (9.16),

H (x) =
1

2

(
Π2 + (∇Φ)2 +m2Φ2

)
,

deduce the expression (9.32) for the total Hamiltonian H.

H =

∫
H (x)d3x =

1

2

∑
k

ωk
{
a†(k)a(k) + a(k)a†(k)

}
.

Solutions to Problems

9.1 Given the Lagrangian density of the field, the field should obey the Euler-
Lagrange equation

∂L

∂Φ
− ∂

∂xµ
∂L

∂
(
∂Φ
∂xµ

) = 0. (9.76)

The first term yields

∂L

∂Φ
= −m2Φ. (9.77)

The second term gives

∂

∂xµ
∂L

∂
(
∂Φ
∂xµ

) =
∂

∂xµ

{
∂Φ

∂xµ

}
=

∂2Φ

∂xµ∂xµ
. (9.78)
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Substituting these in Euler-Lagrange equation, we get∑
µ

∂2Φ

∂xµ∂xµ
+m2Φ = 0 (9.79)

This is the Klein-Gordon equation

(2 +m2)Φ = 0, (9.80)

with

2 =
∂2

∂x02 −
∂2

∂x12 −
∂2

∂x22 −
∂2

∂x32 =
1

c2
∂2

∂t2
−∇2.

9.2 Multiply Φ(x) by ωk and Π(x) by i and then adding and subtracting the
two expressions, we get

ωkΦ(x) + iΠ(x) =
1

(2π)3/2

∫
d3k√
2ωk

2ωka(k)eik·x. (9.81)

ωkΦ(x)− iΠ(x) =
1

(2π)3/2

∫
d3k√
2ωk

2ωka
†(k)e−ik·x. (9.82)

Taking the Fourier transforms of (9.81) and (9.82), we get

a(k) =
1

(2π)3/2

∫
d3x√
2ωk

e−ik·x {ωkΦ(x) + iΠ(x)} . (9.83)

a†(k) =
1

(2π)3/2

∫
d3x√
2ωk

eik·x {ωkΦ(x)− iΠ(x)} . (9.84)

9.3 Using the expressions (9.83) and (9.84) for a(k) and a†(k′), we get

a(k)a†(k′) =
1

(2π)3

∫
d3x√
2ωk

d3x′√
2ωk′

ei(k
′·x′−k·x)

{ωkΦ(x) + iΠ(x)} {ω′kΦ(x′)− iΠ(x′)} . (9.85)

a†(k′)a(k) =
1

(2π)3

∫
d3x√
2ωk

d3x′√
2ωk′

ei(k
′·x′−k·x)

{ωk′Φ(x′)− iΠ(x′)} {ωkΦ(x) + iΠ(x)} . (9.86)

The commutator

[a(k)a†(k′)]− =
1

(2π)3

∫
d3x√
2ωk

d3x′√
2ωk′

ei(k
′·x′−k·x)

×{ωkωk′ [Φ(x),Φ(x′)]− + [Π(x),Π(x′)]−

−iωk[Φ(x),Π(x′)]− +iωk′ [Π(x),Φ(x′)]−} .(9.87)

Substituting the commutation relations between the field functions

[Φ(x),Π(x)]− = iδ(x− x′), [Φ(x),Φ(x′)]− = [Π(x),Π(x′)]− = 0,
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The quantity within the curly bracket in Eq. (9.87) becomes

{· · · } = ωkδ(x− x′) + ωk′δ(x− x′).

The integration over d3x′ is trivial and is done by replacing x′ by x in the
integrand.

[a(k)a†(k′)]− =
1

(2π)3

∫
d3x√

2ωk
√

2ωk′
ei(k

′−k)·x {ωk + ωk′}

= δ(k − k′), (9.88)

since
1

(2π)3

∫
d3xei(k

′−k)·x = δ(k − k′).

9.4 The number of states available with momentum lying between k and k+dk
is

V d3k

h3
=

V d3k

(2π~)3
,

where V is the normalization volume. The total number of states available
in the case of momentum becoming a continuous variable is∫

V d3k

(2π~)3
.

So, the summation over the discrete number of states goes over into an
integral if the momentum becomes a continuous variable.

∑
k

−→
∫

V d3k

(2π~)3

1

V

∑
k

−→
∫

d3k

(2π~)3

in natural units−→
∫

d3k

(2π)3
.

If the nrmalization volume is V , we usually take the normaliztion factor
as 1/

√
V . Hence

1√
V

∑
k

−→ 1

(2π)3/2

∫
d3k.

9.5 The commutator can be expanded as

[Φ(x),Φ(x′)]− = Φ(x)Φ(x′)− Φ(x′)Φ(x)

=
1

(2π)3/2

∫
k0>0

d3k√
2ωk

∫
k′0>0

d3k′√
2ωk′

×
{

[a(k), a†(k′)]−e
ik′·x′e−ik·x + [a†(k), a(k′)]−e

−ik′·x′eik·x
}
.
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Using the commutation relations between the annihilation and creation
operators

[a(k), a†(k′)]− = δ(k − k′),
[a(k), a(k′)]− = [a†(k), a†(k′)]− = 0,

and integrating over d3k′, we get

[Φ(x),Φ(x′)]− =
1

2(2π)3

∫
k0>0

d3k

k0

(
e−ik·(x−x′) − eik·(x−x′)

)
= i∆(x− x′),

with

∆(x− x′) = − i

2(2π)3

∫
k0>0

d3k

k0

(
e−ik·(x−x′) − eik·(x−x′)

)
=

1

(2π)3

∫
k0>0

d3k

k0
eik·(x−x

′) sin k0(x0 − x′0)

= 0, if x0 = x′0.

Hence the commutator [Φ(x),Φ(x′)]− vanishes for equal times.

A vanishing commutator allows one to simultaneously diagonalize the two
operators and permits to make precise observation simultaneously of the
two observables corresponding to the operators. So, the measurement of
the Hermitian field operators Φ(x, t) and Φ(x′, t) cannot interfere with
one another, since no light signal can connect these two space-time points.
It follows that the commutator vanishes for any space-like intervals i.e for
space-time intervals x1 − x2 > c(t1 − t2).

9.6 Let us start with the commutation relation of the scalar field operators.

[Φ(x),Φ(x′)]− = i~∆(x− x′).

∂

∂t
[Φ(x, t),Φ(x′, t′)]− = [Π(x, t),Φ(x′, t′)]−,

since ∂
∂tΦ(x′, t′) = 0 and ∂

∂tΦ(x, t) = Π.

Hence

[Π(x, t),Φ(x′, t′)]− =
∂

∂t
[Φ(x, t),Φ(x′, t′)]− = i~

∂

∂t
∆(x− x′),

where

∆(x− x′) = − i
2

1

(2π)3

∫
k0>0

d3k

k0

(
e−ik·(x−x′) − (eik·(x−x′)

)
= − i

2

1

(2π)3

∫
k0>0

d3k

k0
eik·(x−x

′){2i sin(k0(x0 − x′0))}.
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The only factors that depend on time are x0 = ct and x′0 = ct′. So,
differentiating with respect to t, we get

∂

∂t
sin(k0(x0 − x′0)) = k0 cos(k0(x0 − x′0)) = k0, if x0 = x′0.

Substituting this, we get

∆(x− x′) =
1

(2π)3

∫
d3keik·(x−x

′)

= δ(x− x′).

Thus, we get back the canonical commutation rule for equal times.

[Π(x, t),Φ(x′, t)]− = i~δ(x− x′).

9.7 Expressions (9.60) - (9.62) for Φ(x),Φ+(x),Φ−(x), are not explicitly in
Lorentz invariant forms since they involve three dimensional vectors but
they can be cast in terms of four vectors using the following identity.

Φ(x) =
1

(2π)3/2

∫
k0>0

d3k√
2ωk

(
a(k)e−ik·x + a†(k)e+ik·x

)
= Φ+(x) + Φ−(x).

First let us show that

d4k

(2π)4
2πδ(k2 −m2)θ(k0) =

d4k

(2π)3
δ(k2

0 − ω2
k)θ(k0),

since k2 −m2 = k2
0 − k

2 −m2 = k2
0 − ω2

=
d4k

(2π)3
δ[(k0 + ωk)(k0 − ωk)]θ(k0)

=
d4k

(2π)3

1

2k0
[δ(k0 + ωk) + δ(k0 − ωk)]θ(k0),

since δ(x2−a2) =
1

2a
{δ(x+ a) + δ(x− a)}

=
d3k

(2π)3

dk0

2k0
δ(k0 − ωk)

=
d3k

(2π)3

1

2ωk
.

Using the above identity and adjusting the normalization factor, we can
display the above quantities in a Lorentz invariant form.

9.8 The Hamiltonian density H (Eq. 9.16) consists of three terms. To find
the total Hamiltonian, one has to perform integration over d3x on each
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term. In the absence of interaction, the Hamiltonian will be constant in
time. So, we can choose t = 0.

Let us do the integration over the first term in some detail. Using Eq.
(9.22), we get∫

Π2(x)d3x =
1

(2π)3

∫
d3kd3k′d3x√

2ωk2ωk′
(−ωkωk′)

×
{
a(k)eik·x − a†(k)e−ik·x

}{
a(k′)eik

′·x − a†(k′)e−ik
′·x
}
.

First let us perform integration over d3x. The x- dependent terms are
only within the curly brackets.∫
d3x{· · · }{· · · } =

∫
d3x

[
a(k)a(k′)ei(k+k′)·x − a(k)a†(k′)ei(k−k

′
)·x

−a†(k)a(k′)e−i(k−k
′
)·x + a†(k)a†(k′)e−i(k+k′)·x

]
= (2π)3

[
a(k)a(k′)δ(k + k′)− a(k)a†(k′)δ(k − k′)

−a†(k)a(k′)δ(k − k′) + a†(k)a†(k′)δ(k + k′)
]
,

where we have used the standard integral∫
ei(k+k′)·xd3x = (2π)3δ(k + k′).

The integration over d3k′ is trivial because of the delta function. Thus,
we get ∫

Π2(x)d3x =

∫
d3k

(ωk
2

){
a(k)a†(k) + a†(k)a(k)

−a(k)a(−k)− a†(k)a†(−k)
}
. (9.89)

In the same way, the integrals over the other two terms can be evaluated
and we give below only the final results.∫

(∇Φ(x))2d3x =

∫
d3k

(
k2

2ωk

){
a(k)a†(k) + a†(k)a(k)

+a(k)a(−k) + a†(k)a†(−k)
}
. (9.90)

m2

∫
(Φ(x))2d3x =

∫
d3k

(
m2

2ωk

){
a(k)a†(k) + a†(k)a(k)

+a(k)a(−k) + a†(k)a†(−k)
}
. (9.91)

Adding (9.89), (9.90) and (9.91) and observing that ω2
k = k2 +m2, we get

H =
1

2

∫
ωk[a†(k)a(k) + a(k)a†(k)].



Chapter 10

The Dirac Field

In the last chapter, we have considered the scalar fields which, when quan-
tized, using commutation relations yield an assembly of particles which
obey Bose-Einstein statistics. In this chapter, let us consider the Dirac
spin- 1

2 field which is described by a four-component spinor ψ. Each com-
ponent ψα of the four-component spinor should be treated as independent
dynamical variable. The Dirac field, when quantized, yields an assembly
of spin-1

2 particles known as Fermions. They obey the Fermi-Dirac statis-
tics and satisfy the Pauli exclusion principle. This is achieved by replacing
the commutation relations between the annihilation and creation opera-
tors by anti-commutation relations.

It is found that Bosons which have integral spins can be quantized
only by invoking commutation relations and the Fermions which have
half-integral spins can be quantized only by invoking anticommutation
relations. The close relation between spin and statistics and their connec-
tion to commutation or anticommutation relations between annihilation
and creation operators are the essential features of relativistic quantum
field theory.

The reader is advised to read in advance Chap. 2, where the Dirac
equation is treated as a single particle relativistic wave equation. This is a
prerequisite for studying the Dirac equation as a field equation with a field
function that can be expanded in terms of a complete set of eigenfunctions
of the free particle Dirac equation. Anyhow, a brief summary of the
relevant results are given for the benefit of the reader.

233



234 Textbook of Relativistic Quantum Physics

10.1 Plane wave solutions of the Dirac Equation

Let us consider the Dirac equation in Feynman’s notation1 for a particle
of mass m (in natural units ~ = c = 1).

(p/−m)ψ(x, t) = 0 or (iγµ∂µ −m)ψ(x) = 0. (10.1)

The symbol ∂µ stands for the differential ∂/∂xµ and x denotes the four-
vector x0 = ct, x1, x2, x3. The repeated index µ implies summation over
the index µ. They are, in total, four solutions for Eq. (10.1). Two of
them correspond to positive energy Ep, one with spin up and the other
with spin down. The other two correspond to negative energy −Ep, one
with spin up and the other with spin down. The four plane wave solutions
of Eq. (10.1) are2

ϕr(x) =
1√
V

1√
2Ep

ur(p)e−ip·x, r = 1, 2; (10.2)

ϕr(x) =
1√
V

1√
2Ep

ur(p)eip·x, r = 3, 4. (10.3)

The scalar product of four vectors p and x are defined by

p · x = Et− p · x; p2 = pµpµ = E2 − p2 = m2; (10.4)

We use the convention of denoting the four-vectors by upright bold letters
(p,x), three-vectors by italic bold letters (p,x) and scalars by ordinary
italics (p, x). In Eqs. (10.2) and (10.3), ur(p) denotes the spinors which
are really four-component but expressed below in the two-component form
for the sake of compactness.

ur(p) = (Ep +m)1/2

[
χ±

σ·p
Ep+mχ±

]
, r = 1, 2 (10.5)

ur(p) = (Ep +m)1/2

[ σ·p
Ep+mχ±

χ±

]
, r = 3, 4. (10.6)

1The Feynman notation p/ stands for

p/ = γµpµ = γ0E − γ · p = i

(
γ0 ∂

∂x0
+ γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3

)
= i

∑
µ

γµ
∂

∂xµ
= iγµ∂µ.

2The suffix r denotes the different spin orientations.
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In Eqs. (10.5) and (10.6), the symbols Ep, χ+ and χ− stand for

Ep = +
√
p2 +m2; χ+ =

[
1
0

]
; χ− =

[
0
1

]
. (10.7)

Different authors use different normalizations for the spinors. We choose
the following normalization for the spinors ur(p), their Hermitian conju-

gates u†r(p) and their Hermitian adjoints ūr(p) = u†r(p)γ0, the normaliza-
tion volume being V .

u†r(p)us(p) = 2Epδrs; r, s = 1, 2, 3, 4. (10.8)

ūr(p)us(p) = 2mδrs; r, s = 1, 2. (10.9)

ūr(p)us(p) = −2mδrs; r, s = 3, 4. (10.10)

ūr(p)us(p) = 0 r = 1, 2; s = 3, 4. (10.11)

ūr(p)us(p) = 0 r = 3, 4; s = 1, 2. (10.12)

The spinors satisfy the following equations:

(γµpµ −m)ur(p) = 0, r = 1, 2; (10.13)

(γµpµ +m)ur(p) = 0, r = 3, 4; (10.14)

which are obtained from Eq. (10.1) using the relation

pµ = −i~ ∂

∂xµ
In natural−−−−−−→

units
−i ∂

∂xµ
= −i∂µ.

The spinor normalizations are such that∫
V
ϕ†r(x)ϕs(x)d3x = 2Epδrs, r, s = 1, 2, 3, 4.

The solutions ϕ1(x) and ϕ2(x) correspond to positive energy (E = Ep)
with momentum p whereas the solutions ϕ3(x) and ϕ4(x) correspond to
negative energy (E = −Ep) with momentum −p.

The Hermitian adjoint of the Dirac equation (10.1) is

ψ̄(x)

(
iγµ

←
∂µ +m

)
= 0, (10.15)

with ψ̄(x) = ψ†(x)γ0. The left-arrow sign indicates that the operator acts
on the function located on the left.
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10.2 Lagrangian density for the Dirac field

It can be easily verified that both the Dirac equation (10.1) and its Her-
mitian adjoint (10.15) can be obtained from the Lagrangian density

L D(x) = ψ̄(x) (iγµ∂µ −m)ψ(x), (10.16)

by insisting that it satisfies the Euler-Lagrange equation.
If ψ, is a complex field, then we can treat both ψ and ψ̄ as independent

fields. The Euler-Lagrange equation for ψ̄ gives

∂µ

(
∂L

∂
(
∂µψ̄

)) =
∂L

∂ψ̄
. (10.17)

Since the Lagrangian density L given by Eq. (10.16) does not contain
any derivative of ψ̄, the left hand side of Eq. (10.17) vanishes and Eq.
(10.17) yields the Dirac equation (10.1).

∂L

∂ψ̄
= (iγµ∂µ −m)ψ(x) = 0.

In a similar way, we can consider the Euler-Lagrange equation for ψ
and obtain the Hermitian conjugate of the Dirac equation (10.15).

In quantum field theory, the Lagrangian density should be Hermitian.
In the case of scalar fields, we found the corresponding Lagrangian to be
Hermitian. But the Dirac Lagrangian (10.16) is not Hermitian. The mass
term is Hermitian whereas the Hermitian conjugate of the other term is
given by (

iψ̄γµ∂µψ
)†

= −i(∂µψ)†γµ†γ0ψ = −i(∂µψ̄)γµψ, (10.18)

using the hermiticity property of the gamma matrices

(γµ)† = γ0γµγ0. (10.19)

Instead of (10.16), we can use the following Hermitian Lagrangian density:

L ′ =
i

2

(
ψ̄γµ∂µψ − (∂µψ̄)γµψ

)
−mψ̄ψ. (10.20)

However, it is not necessary since the two Lagrangians L and L ′ are
equivalent since they differ by a term which can be expressed as a total
divergence. The difference

L −L ′ =
i

2

(
ψ̄γµ∂µψ + (∂µψ̄)γµψ

)
= ∂µ

(
i

2
ψ̄γµψ

)
, (10.21)



10. The Dirac Field 237

is a total divergence. It may be recalled that the two Lagrangians which
differ by a total divergence would yield the same equations of motion based
on the action principle. So, we can continue to use the same Lagrangian
(10.16).

Now, let us proceed to find the conjugate momentum density and the
Hamiltonian density of the field.

Π(x) =
∂L D

∂ψ̇
=
∂L D

∂ψ,0
= iψ̄(x)γ0 = iψ†(x). (10.22)

H (x) = Π(x)ψ̇(x)−L D(x)

= Π(x)ψ̇(x) = iψ†(x)ψ̇(x) = iψ†(x)
∂ψ(x)

∂t
. (10.23)

The last line in Eq. (10.23) is obtained using the result that the La-
grangian density L D given by Eq. (10.16) vanishes if the field function
satisfies the Dirac equation.

Our aim is to find the total Hamiltonian H.

H =

∫
H d3x =

∫
ψ†(x)i

∂ψ(x)

∂t
d3x. (10.24)

10.3 Fourier decomposition of the Dirac field

Let us now replace the negative energy electron spinors u3(−p) and u4(−p)
by positive energy positron spinors v1(p) and v2(p),

v1(p) ≡ u3(−p), v2(p) ≡ u4(−p), (10.25)

and treat the Dirac field functions ψ(x) and ψ̄(x) as field operators. The
field operators ψ(x) and ψ̄(x) are expanded in terms of ϕr(x), defined by
Eqs. (10.2) and (10.3).

ψ(x) =
1√
V

∑
p

√
1

2Ep

2∑
r=1

[
cr(p)ur(p)e−ip·x + d†r(p)vr(p)eip·x

]
;(10.26)

ψ̄(x) =
1√
V

∑
p

√
1

2Ep

2∑
r=1

[
c†r(p)ūr(p)eip·x + dr(p)v̄r(p)e−ip·x

]
.(10.27)

The expansion coefficients cr(p) and c†r(p) are to be interpreted as anni-
hilation and creation operators of the Fermions and the operators dr(p)

and d†r(p) are to be interpreted as annihilation and creation operators
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of the anti-Fermions. For this, let us write down ψ† and i∂ψ∂t , using the
expansion (10.26) for ψ(x).

ψ†(x) =
1√
V

∑
p

√
1

2Ep

2∑
r=1

[
c†r(p)u†r(p)eip·x + dr(p)v†r(p)e−ip·x

]
;(10.28)

i
∂ψ(x)

∂t
=

1√
V

∑
p′

√
Ep′

2

2∑
s=1

[
cs(p

′)us(p
′)e−ip

′·x

−d†s(p′)vs(p′))eip
′·x
]
. (10.29)

Substituting expressions (10.28) and (10.29) in Eq. (10.24), we get

H =
1

V

∑
pp′

√
Ep′

4Ep

∫ ∑
r,s

[
c†r(p)cs(p

′)u†r(p)us(p
′)ei(p−p′)·x

−dr(p)d†s(p
′)v†r(p)vs(p

′)e−i(p−p′)·x

−c†r(p)d†s(p
′)u†r(p)vs(p

′)ei(p+p′)·x

+ dr(p)cs(p
′)v†r(p)us(p

′)e−i(p+p′)·x
]
d3x (10.30)

=
∑
p

2∑
r=1

Ep

[
c†r(p)cr(p)− dr(p)d†r(p)

]
. (10.31)

For the reduction of (10.30) into (10.31), the reader may refer to the solved
problem 10.1.

When t = 0, the exponential factors in Eq. (10.30) involve only three-
momenta p instead of four-momenta p and so the exponential factors
reduce to

ei(p−p′)·x t=0−→ e−i(p−p
′)·x.

We can also replace the discrete summation over three-momenta by an
integral in the case of continuous variation of three-momenta, using the
following prescription.

1

V

∑
p

−→
∫

1

(2π)3
d3p.

Let us now find the total charge that resides in the field. For this, let
us first find the four-vector current jµ(x) of the Dirac field.

jµ(x) = −ie

(
∂L

∂ψ,µ
ψ − ∂L

∂ψ†,µ
ψ†

)
= eψ̄(x)γµψ(x). (10.32)
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The zeroth component of the four-current jµ yields the charge.

Q =

∫
V
j0(x)d3x

= e

∫
V
ψ̄(x)γ0ψ(x)d3x = e

∫
V
ψ†(x)ψ(x)d3x

= e
∑
p

2∑
r=1

(
c†r(p)cr(p) + dr(p)d†r(p)

)
. (10.33)

Expressions (10.31) and (10.33) give the total energy and the total charge
of the Dirac field in terms of the annihilation and creation operators.
Hitherto, no commutation relation has been assumed between the creation
and annihilation operators. So, let us choose either the commutation or
anticommutation relation between the annihilation and creation operators
so that we get physically meaningful results.

The total energy will not be positive-definite if annihilation and cre-
ation operators commute. On the other hand, the choice of anticommuta-
tion relation between annihilation and creation operator makes the energy
positive definite, although the zero point energy becomes negative. This
should not cause any serious problem since we can redefine the energy
scale with a convenient choice of zero point energy.

10.4 Quantization of the Dirac field

The choice of commutation relation makes the total charge positive def-
inite. On the other hand, the choice of anticommutation relation makes
the total charge either positive or negative. This is physically acceptable.
The particles and antiparticles have opposite charges and the net charge
of the field is their difference.

Let us now write down the anticommutation relations between the
annihilation and creation operators.

{cr(p), c†s(p′)}+ = δrsδ(p− p′); {dr(p), d†s(p′)}+ = δrsδ(p− p′);
{cr(p), cs(p

′)}+ = 0; {c†r(p), c†s(p′)}+ = 0;

{dr(p), ds(p
′)}+ = 0; {d†r(p), c†s(p′)}+ = 0.

(10.34)

Using the anticommutation relations (10.34), the total energy and charge
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of the field become

H =
∑
p

2∑
r=1

Ep

(
c†r(p)cr(p) + d†r(p)dr(p)

)
−
∑
p

2∑
r=1

Ep (10.35)

=
∑
p

2∑
r=1

Ep

(
Nr(p) + Ñr(p)

)
+ E0; (10.36)

Q = e
∑
p

2∑
r=1

(
Nr(p)− Ñr(p)

)
+Q0; (10.37)

where Nr and Ñr denote the number operator for the particles and an-
tiparticles respectively.

Nr(p) = c†r(p)cr(p) and Ñr(p) = d†r(p)dr(p). (10.38)

The zero-point energy and charge are denoted by E0 and Q0.

E0 = −
∑
p

2∑
r=1

Ep = −2
∑
p

Ep; Q0 =
∑
p

2∑
r=1

e = 2e
∑
p

1.(10.39)

If we identify the zero-point energy and charge with the ground state or
the vacuum state, then what is physically observable is the energy of a
system with respect to the ground state. So, the physically measurable
energy and charge of a system are given by

E =
∑
p

2∑
r=1

Ep (nr(p) + ñr(p)) ; (10.40)

Q = e
∑
p

2∑
r=1

(nr(p)− ñr(p)) ; (10.41)

where nr(p) and ñr(p) denote the eigenvalues of the number operators
Nr and Ñr. The anticommutation relation restricts the eigenvalues of the
number operator nr(p), ñr(p) = 0, 1.

The zero point energy will be avoided if we resort to the normal or-
dering. The normal ordering for Fermion operators is to arrange the
annihilation operators to the right of creation operators, assuming the
anticommutators to be zero. In the case of Bosons, the normal ordering
was done by assuming the commutators to be zero.
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10.4.1 Anticommutator between Dirac field functions

Having established the anticommutation relations (10.34) between the an-
nihilation and creation operators, the anticommutation relation between
the Dirac field operators at equal times ψα(x) and ψ̄β(x) can be deduced.
Treating p as a continuous variable and putting t = 0, we get the following
expressions from Eqs. (10.26) and (10.27).

ψ(x, t = 0)

=
1

(2π)3/2

∫
d3p

1

2Ep

2∑
r=1

{
cr(p)ur(p)eip·x + d†r(p)vr(p)e−ip·x

}
;(10.42)

ψ̄(x, t = 0)

=
1

(2π)3/2

∫
d3p

1

2Ep

2∑
r=1

{
c†r(p)ūr(p)e−ip·x + dr(p)v̄r(p)eip·x

}
.(10.43)

Since ψ is a four-component spinor, each component has to be treated
as independent field variable3. Let us now evaluate the anticommutator
{ψα(x), ψ̄β(x)}+.

{ψα(x), ψ̄β(x′)}+

=
1

2π)3

∫
d3pd3p′√
2Ep2Ep′

∑
r,s

{
{cr(p), c†s(p

′)}+uαr (p)ūβs (p′)ei(p·x−p
′·x′)

+{dαr (p), dβs (p′)}+vαr (p)v̄βs (p′)e−i(p·x−p
′·x′)

}
;

=
1

2π)3

∫
d3p

2Ep

∑
r

{
uαr (p)ūβr (p)eip·(x−x

′) + vαr (p)v̄βr (p′)e−ip·(x−x
′)
}
.

(10.44)

The last step is obtained using the anticommutation relations (10.34) for
the annihilation and creation operators. The spinor indices α, β are used
either as subscript or superscript depending upon convenience. Since∑

r

uαr (p)ūβr (p) = (p/+m)α,β,
∑
r

vαr (p)v̄βr (p) = (p/−m)α,β,

3Since ψψ̄ is a matrix and ψ̄ψ is a number, there is no meaning in trying to find
the anticommutation relation {ψ(x), ψ̄(x)}+. We can only find the anticommutation
relation between their components {ψα(x), ψ̄β(x)}+.
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we can rewrite Eq. (10.44) as

{ψα(x), ψ̄β(x′)}+

=
1

2π)3

∫
d3p

2Ep

{
(p/+m)αβe

ip·(x−x′) + (p/−m)αβe
−ip·(x−x′)

}
.

(10.45)

Expanding

p/+m = γ0Ep − γ · p+m, p/−m = γ0Ep − γ · p−m,

and integrating over d3p, we find that only the γ0 term contributes,
whereas the other terms cancel away4. Thus we get the anticommuta-
tion relations

{ψα(x), ψ̄β(x′)}+ = (γ0)αβ δ(x− x
′); (10.46)

{ψα(x), ψ†β(x′)}+ = Iα,βδ(x− x′). (10.47)

Since Π(x) = iψ†(x) according to Eq. (10.22), we get the anticommuta-
tion relation

{ψα(x),Πβ(x′)}+ = iIα,βδ(x− x′), (10.48)

where I is the unit matrix.

10.5 Covariant anticommutation relations

Just as we have obtained the covariant commutation relations for the
scalar field operators in chapter 9, we can deduce the covariant anticom-
mutation relations for the Dirac operators.

Let us start with the covariant form of the Dirac field operators ψ(x)
and ψ̄(x) and their Lorentz invariant divisions into positive frequency
or energy parts ψ+(x), ψ̄+(x) and negative frequency or energy parts
ψ−(x), ψ̄−(x).

ψ(x) = ψ+(x) + ψ−(x); ψ̄(x) = ψ̄+(x) + ψ̄−(x); (10.49)

4The following integral relations will be useful:∫
γ · p eip·(x−x

′)d3p =

∫
γ · p′ eip

′·(x−x′)d3p′ with p′ = −p.

1

(2π)3

∫
e+ip·(x−x

′)d3p =
1

(2π)3

∫
e−ip·(x−x

′)d3p = δ(x− x′).
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with

ψ+(x) =
1

(2π)3/2

∫
p0>0

d3p√
2Ep

2∑
r=1

cr(p)ur(p) e−ip·x; (10.50)

ψ−(x) =
1

(2π)3/2

∫
p0>0

d3p√
2Ep

2∑
r=1

d†r(p)vr(p) eip·x; (10.51)

ψ̄+(x) =
1

(2π)3/2

∫
p0>0

d3p√
2Ep

2∑
r=1

dr(p)v̄r(p) e−ip·x; (10.52)

ψ̄−(x) =
1

(2π)3/2

∫
p0>0

d3p√
2Ep

2∑
r=1

c†r(p)ūr(p) eip·x. (10.53)

These operators have some physical significance. ψ+(x) is the destruc-
tion operator for the Fermion, ψ−(x) is the creation operator for the
anti-Fermion, ψ̄+(x) is the destruction operator for the anti-Fermion and
ψ̄−(x) is the creation operator for the Fermion. The physical vacuum is
characterized by the property that the destruction operators operating on
the vacuum yield zero.

ψ+(x)|0〉 = 0; ψ̄+(x)|0〉 = 0. (10.54)

The anticommutation rules for the creation and destruction operators are

{ψ+(x), ψ−(x′)}+ = {ψ̄−(x), ψ̄+(x′)}+ = 0; (10.55)

{ψ̄+(x), ψ+(x′)}+ = {ψ̄−(x), ψ−(x′)}+ = 0. (10.56)

For the anticommutator {ψ+
α (x), ψ̄−β (x)}+, we have

{ψ+
α (x), ψ̄−β (x′)}+ =

1

(2π)3

∫
d3p√
2Ep

∫
d3p′√
2Ep′

2∑
r=1

2∑
s=1

{cr(p), c†s(p
′)}+

× uαr (p)ūβs (p′)e−ip·xeip
′·x′ . (10.57)

Since

{cr(p), c†s(p
′)}+ = δrsδ(p− p′)∑

r

ur(p)ūs(p) = p/+m,
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we get

{ψ+
α (x), ψ̄−β (x′)}+ =

1

(2π)3

∫
d3p

2Ep

2∑
r=1

uαr (p)ūβr (p)e−ip·(x−x′)

=
1

2(2π)3

∫
d3p

Ep
(p/+m)αβe

−ip·(x−x′)

= (i∇/x +m)αβ
1

2(2π)3

∫
d3p

Ep
e−ip(x−x′)

= i(i∇/x +m)αβ∆+(x− x′)

= −iS+
αβ(x− x′), (10.58)

where

∆+(x− x′) =
−i

2(2π)3

∫
p0>0

d3p

p0
e−ip·(x−x′) (10.59)

S+
αβ(x− x′) = −(i∇/x +m)αβ∆+(x− x′). (10.60)

In a similar way, we can deduce the anticommutation relation for the
antiparticle operators.

{ψ−α (x), ψ̄+
β (x′)}+ =

1

(2π)3

∫
d3p√
2Ep

∫
d3p′√
2Ep′

2∑
r=1

2∑
s=1

{d†r(p), ds(p
′)}+

× vαr (p)v̄βs (p′)eip·xe−ip
′·x′ . (10.61)

Since

{d†r(p), ds(p
′)}+ = δrsδ(p− p′),∑

r

vr(p)v̄s(p) = p/−m,

we get

{ψ−α (x), ψ̄+
β (x′)}+ =

1

(2π)3

∫
d3p

2Ep

2∑
r=1

vαr (p)v̄βr (p)eip·(x−x′)

=
1

2(2π)3

∫
d3p

Ep
(p/−m)αβe

ip·(x−x′)

= (i∇/x −m)αβ
1

2(2π)3

∫
d3p

Ep
eip(x−x′)

= −i(i∇/x −m)αβ∆−(x− x′)

= −iS−αβ(x− x′), (10.62)
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where

∆−(x− x′) =
i

2(2π)3

∫
p0>0

d3p

p0
eip·(x−x′) (10.63)

S−αβ(x− x′) = (i∇/x −m)αβ∆−(x− x′). (10.64)

Finally, let us find the anticommutation relation between ψα(x) and ψ̄β(x′).

{ψα(x), ψ̄β(x′)}+ =
{(
ψ+
α (x) + ψ−α (x)

)
, (ψ̄+

β (x′) + ψ̄−β (x′))
}

+

= {ψ+
α (x), ψ̄+

β (x′)}+ + {ψ+
α (x), ψ̄−β (x′)}+

+{ψ−α (x), ψ̄+
β (x′)}+ + {ψ−α (x), ψ̄−β (x′)}+ (10.65)

Two of the above anticommutator brackets vanish.

{ψ+
α (x), ψ̄+

β (x′)}+ = {ψ−α (x), ψ̄−β (x′)}+ = 0.

Using the results (10.58) and (10.62) for the other two, we get

{ψα(x), ψ̄β(x′)}+ = −i[S+
αβ(x− x′) + S−αβ(x− x′)]. (10.66)

Review Questions

10.1 Write down the Lagrangian density for the Dirac field and obtain the
field equations. Deduce expressions for the momentum density and the
Hamiltonian density for the Dirac field.

10.2 Write down the Dirac field functions in terms of a complete set of single
particle Dirac wave functions and arrive at an expression for the energy of
an assembly of Dirac particles.

10.3 Deduce expressions for energy and charge of an assembly of Dirac parti-
cles in terms of creation and annihilation operators and show they yield
meaningful results only when anticommutation relations are assumed for
the annihilation and creation operators.

10.4 Given the anticommutation relations for the annihilation and creation
operators for the Dirac particle

{cr(p), c†s(p
′)}+ = δrsδ(p− p′), {dr(p), d†s(p

′)}+ = δrsδ(p− p′),

deduce the following anticommutation relations for the Dirac field opera-
tors:

{ψα(x), ψ̄β(x′)}+ = γ0
α,βδ(x− x′)

{ψα(x),Πβ(x′)}+ = = iIαβδ(x− x′)

where I is the unit matrix.
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10.5 Deduce the covariant anticommutation relations between the Dirac field
operators:

{ψ+
α (x), ψ̄−β (y)}+, {ψ−α (x), ψ̄+

β (y)}+,

where the upper sign + and− indicates the positive and negative frequency
part of the Dirac field operators.

Problems

10.1 Deduce the expression (10.31) for the energy of an assembly of Dirac
particles from Eq. (10.30).

10.2 Deduce the expression (10.33) for the charge of the Dirac field in terms
of the creation and annihilation operators.

10.3 Given the covariant anticommutation relations (10.58) and (10.62),

{ψ+
α (x), ψ̄−β (x′)}+ =

1

(2π)3

∫
d3p

2Ep

2∑
r=1

uαr (p)ūβr (p)e−ip·(x−x′)

=
1

2(2π)3

∫
d3p

Ep
(p/+m)αβe

−ip·(x−x′)

{ψ−α (x), ψ̄+
β (x′)}+ =

1

(2π)3

∫
d3p

2Ep

2∑
r=1

vαr (p)v̄βr (p)eip·(x−x′)

=
1

2(2π)3

∫
d3p

Ep
(p/−m)αβe

ip·(x−x′)

deduce the anticommutation relation (10.46)

{ψα(x), ψ̄β(x′)}+ = (γ0)αβ δ(x− x
′),

for equal times or for t− 0

Solutions to Problems

10.1 Evaluate expression (10.30) at time t = 0. Then the expression involves
only three-momentum p and p′.

ei(p−p′)·x t=0−→ e−i(p−p
′)·x.

Using the orthonormal properties (10.8) - (10.12) of Dirac spinors, we get

u†r(p)us(p
′) = 2Ep δrs δ(p− p′);

v†r(p)vs(p
′) = 2Ep δrs δ(p− p′);

u†r(p)vs(p
′) = v†r(p)us(p

′) = 0.
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Substituting them in expression (10.30) is equivalent to putting r = s and
p = p′.

H =
1

V

∑
p

2∑
r=1

Ep
[
c†r(p)cr(p)− dr(p)d†r(p)

] ∫
d3x

=
∑
p

2∑
r=1

Ep
[
c†r(p)cr(p)− dr(p)d†r(p)

]
.

10.2 The charge of the Dirac field is given by

Q = e

∫
V

ψ†(x)ψ(x)d3x,

where ψ†(x)ψ(x) is taken at the same space-time point x. The Fourier
expansions of ψ†(x) and ψ(x) are given by Eqs. (10.28) and (10.26). They
are reproduced here for the sake of convenience.

ψ†(x) =
1√
V

∑
p

√
1

2Ep

2∑
r=1

[
c†r(p)u†r(p)eip·x + dr(p)v†r(p)e−ip·x

]
;

ψ(x) =
1√
V

∑
p′

√
1

2Ep′

2∑
s=1

[
cs(p

′)us(p
′)e−ip

′·x + d†s(p
′)vs(p

′)eip
′·x
]

;

In taking the product of ψ†(x)ψ(x), the cross terms involving the spinors
u†r(p)vs(p

′) will vanish since they are orthogonal. Retaining only the con-
tributing terms, we get

ψ†(x)ψ(x) =
1

V

∑
p,p′

(
1

2Ep2Ep′

) 1
2 ∑
r,s

[
c†r(p)cs(p

′)u†r(p)us(p
′)ei(p−p′)·x

+dr(p)d†s(p
′)v†r(p)vs(p

′)e−i(p−p′)·x
]

Since

u†r(p)us(p
′) = 2Epδrsδ(p− p′) and v†r(p)vs(p

′) = 2Epδrsδ(p− p′)

we get

ψ†(x)ψ(x) =
1

V

∑
p

∑
r

[c†r(p)cs(p) + dr(p)d†r(vp
′)]

Since
∫
d3x = V cancels with 1/V , we get the simplified expression for Q.

Q = e
∑
p

∑
r

[c†r(p)cs(p) + dr(p)d†r(vp
′).
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10.3 The anticommutator {ψα(x), ψ̄β(x′)}+ can be expanded in term of posi-
tive and negative frequency operators.

{ψα(x), ψ̄β(x′)}+ =
{

(ψ+
α (x) + ψ−α (x)), (ψ̄+

β (x′) + ψ̄−β (x′))
}

+

= {ψ+
α (x), ψ̄+

β (x′)}+ + {ψ+
α (x), ψ̄−β (x′)}+

+{ψ−α (x), ψ̄+
β (x′)}+ + {ψ−α (x), ψ̄−β (x′)}+

= {ψ+
α (x), ψ̄−β (x′)}+ + {ψ−α (x), ψ̄+

β (x′)}+,

since
{ψ+

α (x), ψ̄+
β (x′)}+ = {ψ−α (x), ψ̄−β (x′)}+ = 0.

It is given that

{ψ+
α (x), ψ̄−β (x′)}+ =

1

2(2π)3

∫
d3p

Ep
(p/+m)αβe

−ip·(x−x′);

{ψ−α (x), ψ̄+
β (x′)}+ =

1

2(2π)3

∫
d3p

Ep
(p/−m)αβe

ip·(x−x′).

For t = 0,

e−ip·(x−x′) → eip·(x−x
′); eip·(x−x′) → e−ip·(x−x

′)

Please note that
p/ = γ0E − γ · p.

Using the following integral identities

1

(2π)3

∫
d3p eip·(x−x

′) =
1

(2π)3

∫
d3p e−ip·(x−x

′) = δ(x− x′),

1

(2π)3

∫
d3p(γ · p)eip·(x−x

′) =
1

(2π)3

∫
d3p(−γ · p)e−ip·(x−x

′),

we find that the terms involving γ · p and m mutually cancel away and
only the term involving γ0 contributes. Thus we finally get

{ψα(x), ψ̄β(x′)}+ = {ψ+
α (x), ψ̄−β (x′)}+ + {ψ−α (x), ψ̄+

β (x′)}+,
= (γ0)αβδ(x− x′).

For simplicity, we have chosen t = 0 but this relation holds for any equal
times t = t′.



Chapter 11

The Electromagnetic Field

The electromagnetic field is described by a set of Maxwell’s equations
which specify the electrical and magnetic field strengths E and B at
each space point and their variation with time. Alternatively, it can be
described in terms of scalar and vector potentials φ and A. Since φ and
A together yield 4 components, it is possible to represent them as a four-
vector Aµ. The latter approach yields a field equation for a particle of zero
rest mass similar to the familiar Klein-Gordon (K-G) equation. Earlier
we have studied the K-G equation for a scalar field that corresponds to
spin-zero particle. Here we consider a K-G equation for zero rest mass
but with a four-vector function that corresponds to spin-1 particle.

2Aµ(x) = 0, µ = 0, 1, 2, 3.

This is the relativistic field equation for the photon in free space.

The electrical and magnetic field strengths E and B together form 6
components and it is shown that they correspond to six independent com-
ponents of an antisymmetric tensor Fµν of rank 2 formed with Aµ. The
scalar and vector potentials φ(x, t) and A(x, t) are not observable quan-
tities but the electrical and magnetic field strengths E(x, t) and B(x, t)
that are derived from the potentials are measurable quantities. However
it is found that the scalar and vector potentials are not unique but there
exists more than one set of potentials that yield the same E and B. This
is often referred to as the invariance of the electromagnetic field under
gauge transformation.

249
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11.1 Maxwell’s Equations

First let us write down Maxwell’s equations for the electromagnetic field
in unrationalized Gaussian (CGS) units, using the two different notations
that are in vogue for differential operators in vector algebra.

divB = 0 or ∇ ·B = 0. (11.1)

curlE +
1

c

∂B

∂t
= 0 or ∇×E +

1

c

∂B

∂t
= 0. (11.2)

curlB − 1

c

∂E

∂t
=

4πj

c
or ∇×B − 1

c

∂E

∂t
=

4πj

c
. (11.3)

divE = 4πρ or ∇ ·E = 4πρ. (11.4)

From Eq. (11.1), it can be inferred thatB can be expressed as the curl of a
vector A since div curl A = 0, according to the vector algebra. Therefore

B = curlA =∇×A, (11.5)

where A is known as the vector potential of the electromagnetic field.
ExpressingB in terms ofA and using the commutativity of the differential
operators ∇ and ∂

∂t , Eq. (11.2) can be rewritten as

∇×
(
E +

1

c

∂A

∂t

)
= 0. (11.6)

Since curl grad φ = 0, the quantity within bracket in Eq. (11.6) can be
written as the gradient of a scalar function φ.

−∇φ = E +
1

c

∂A

∂t
, (11.7)

choosing the negative sign for convenience. Thus

E = −∇φ− 1

c

∂A

∂t
. (11.8)

By this procedure, we have expressed the fields B and E in terms of
A and φ, known as the vector and the scalar potential describing the
electromagnetic field.

Now let us express Eqs. (11.3) and (11.4) in terms of A and φ. Eq.
(11.3) can be rewritten as (using Eqs. (11.5) and (11.8)).

curl curlA− 1

c

∂

∂t

(
−∇φ− 1

c

∂A

∂t

)
=

4πj

c
. (11.9)
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Using the identity

curl curlA = grad divA−∇2A, (11.10)

in vector algebra, Eq. (11.3) becomes

∇(∇ ·A)−∇2A− 1

c

∂

∂t

(
−∇φ− 1

c

∂A

∂t

)
=

4πj

c

∇
(
∇ ·A+

1

c

∂φ

∂t

)
−∇2A+

1

c2

∂2A

∂t2
=

4πj

c
. (11.11)

In the above Equation, put

∇ ·A+
1

c

∂φ

∂t
= 0. (11.12)

Then Eq. (11.11) simplifies to

1

c2

∂2A

∂t2
−∇2A =

4πj

c
. (11.13)

Equation (11.13) is obtained under the condition (11.12), which is known
as the Lorentz condition.

Substituting Eq. (11.8) for E in Eq. (11.4) and substituting the
Lorentz condition

∇ ·A = −1

c

∂φ

∂t
, (11.14)

Eq. (11.4) reduces to

1

c2

∂2φ

∂t2
−∇2φ = 4πρ. (11.15)

Equations (11.13) and (11.15) can be combined and written in a rel-
ativistically covariant form(

1

c2

∂2

∂t2
−∇2

)
Aµ =

4πjµ

c
; (µ = 0, 1, 2, 3) (11.16)

using the four-vector notation. A four-vector is defined as a set of four
quantities that transform in the same way as ct, x, y, z when one goes from
one inertial frame of reference to another (under Lorentz transformation).
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xµ (= x0, x1, x2, x3); x0 = ct;
Aµ (= A0, A1, A2, A3); A0 = φ;
jµ (= j0, j1, j2, j3); j0 = cρ.
pµ (= p0, p1, p2, p3); p0 = E/c.

(11.17)

Defining the D’Alembertian operator

2 =
1

c2

∂2

∂t2
−∇2,

Eq. (11.16) becomes

2Aµ =
4πjµ

c
. (11.18)

Equation (11.18) can be considered as the relativistic wave equation for
the photon but the Aµ’s are subject to the Lorentz restriction (11.14).

∑
µ

∂Aµ

∂xµ
= 0 or

∑
µ

∂µA
µ = 0, (11.19)

using the short-hand notation ∂µ = ∂/∂xµ. Potentials satisfying the
Lorentz condition, Eq. (11.19) are known to be in Lorentz gauge. It is to
be observed that Eq. (11.18) together with the Lorentz condition (11.19)
is equivalent to Maxwell’s equations. Although Aµ is often referred to as
potential in classical physics, it really refers to the photon field in field
theory.

For a free field, µ = 0. Consequently, the electromagnetic wave equa-
tion reduces to

2Aµ = 0 or

3∑
ν=0

∂ν∂νA
µ = 0. (11.20)

On inspection, it can be recognized as the Klein-Gordon equation for
a particle with zero mass. The solution which we sought for the Klein-
Gordon equation was a scalar function corresponding to spin zero particle.
In the present case, we have to find a solution for the four-vector function
and this will correspond to the spin 1 particle.
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11.2 Electromagnetic Field Tensor

Given the scalar and vector potentials φ andA, they can be treated as the
components Aµ of a four-component vector potential and the components
of the magnetic and electric fields can be expressed as the components of
a second rank antisymmetric tensor Fµν , defined by1

Fµν =
∂Aµ

∂xν
− ∂Aν

∂xµ
= ∂νAµ − ∂µAν . (11.21)

using the notation ∂ν = ∂/∂xν . Since this second rank tensor is anti-
symmetric Fµν = −F νµ and the diagonal elements with µ = ν are zero,
there are only six independent components and it can be shown that they
correspond to the three components of E and the three components of B.

From Eqs. (11.5) and (11.8), we obtain

Bx =
∂Az
∂y
− ∂Ay

∂z
≡ −∂2A3 + ∂3A2 = F 23; (11.22)

By =
∂Ax
∂z
− ∂Az

∂x
≡ −∂3A1 + ∂1A3 = F 31; (11.23)

Bz =
∂Ay
∂x
− ∂Ax

∂y
≡ −∂1A2 + ∂2A1 = F 12; (11.24)

Ex = −1

c

∂Ax
∂t
− ∂φ

∂x
≡ −∂0A1 + ∂1A0 = F 01; (11.25)

Ey = −1

c

∂Ay
∂t
− ∂φ

∂y
≡ −∂0A2 + ∂2A0 = F 02; (11.26)

Ez = −1

c

∂Az
∂t
− ∂φ

∂z
≡ −∂0A3 + ∂3A0 = F 03. (11.27)

Collecting the above results, we can explicitly write down the elements of
the field tensor in the form of a matrix, designating the rows and columns
by µ and ν.

1The differential operators are defined by

∂µ =
∂

∂xµ
= (∂0, ∂1, ∂2, ∂3) =

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
1

c

∂

∂t
,∇
)
.

∂µ = gµν∂ν =

(
1

c

∂

∂t
,−∇

)
.
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µ/ν→ 0 1 2 3

Fµν =

0
1
2
3


0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 . (11.28)

In a crisp way, the field tensor can be written as2

Fµν δµν = 0; F ij = εijk Bk; F 0k = −F k0 = Ek, (11.29)

Maxwell’s equations (11.3) and (11.4) can be combined and written in
terms of the electromagnetic field tensor Fµν .

3∑
µ=0

∂µF
µν =

4πjν

c
, ν = 0, 1, 2, 3. (11.30)

For a free field, jν = 0. Consequently,∑
µ

∂µF
µν ≡

∑
µ

∂Fµν

∂xµ
= 0, for a free field. (11.31)

Eqs. (11.30) are equivalent to the inhomogeneous set of Maxwell’s equa-
tions (11.3) and (11.4). The other set (viz., the homogeneous set) of
Maxwell’s equations (11.1) and (11.2) follows directly from the definition
(11.21) of field tensor Fµν .

∂Fµν

∂xλ
+
∂F νλ

∂xµ
+
∂F λµ

∂xν
= 0, (11.32)

where µ, ν, λ are any three cyclic set out of the four indices 0,1,2,3. When
µ, ν, λ are chosen as 1,2,3, Eq. (11.32) corresponds to Maxwell’s equation
∇ ·B = 0. Choosing the indices µ, ν, λ as (2,3,0), (3,0,2), (0,2,3) in Eq.
(11.32), we obtain the other homogeneous Maxwell’s equation (11.2).

2The symbol εijk stands for

εijk = +1, if i, j, k is an even permutation of the numbers 1,2,3
= −1, if i, j, k is an odd permutation of the numbers 1,2,3
= 0, if any two indices are equal.
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Thus, we find that the very definition of the field tensors Fµν satisfy
the homogeneous set of Maxwell’s equations and so we need to consider
only the inhomogeneous equations (11.30) for seeking a Lagrangian for-
mulation.

Treating Aµ as field quantities, the Lagrangian density for the elec-
tromagnetic field can be written as

L = −
FλρF

λρ

16π
+
jλA

λ

c
. (11.33)

The first term on the right hand side of Eq. (11.33) is for the free field
and the second term denotes the interaction in terms of the four-vector
current density jµ. It can be shown that the inhomogeneous Maxwell’s
Eqs. (11.30) can be obtained from the Lagrangian density (11.33) by
insisting that they satisfy the Euler-Lagrange Equation,

∂L

∂Aµ
− ∂ν

∂L

∂(∂νAµ)
= 0. (11.34)

It follows from (11.33) that

∂L

∂Aµ
=

jλ
c
δλµ (11.35)

∂L

∂
(
∂Aµ
∂xν

) = −
Fλρ
8π

∂Fλρ

∂
(
∂Aµ
∂xν

) (11.36)

Since

Fλρ =
∂Aρ
∂xλ

− ∂Aλ
∂xρ

,

we obtain∑
λρ

Fλρ
∂Fλρ

∂
(
∂Aµ
∂xν

) =
∑
λρ

Fλρ (δλµδρ,ν − δλνδρ,µ) = 2Fµν . (11.37)

Substituting these results in the Euler-Lagrange Eq. (11.34), we get

jµ
c
− 1

4π

∂Fµν
∂xν

= 0, (11.38)

which is identical with Eq. (11.30).
The Lagrangian density L as given by Eq. (11.33) is a sum of two

terms, one arising from the free field and the other from the interaction
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with the outside world in the form of charge and current density. The
charge and current density is an explicit function of the spatial and time
coordinates xµ and so only in the case of free fields, there will be conserved
currents in the form of stress-energy tensor Tµν , defined by

Tµν =
∂L

∂
(
∂Aλ
∂xν

) ∂Aλ
∂xµ

−L δµν

= − 1

4π
FνλAλµ −L δµν . (11.39)

It is possible to study the electromagnetic theory without using the
potentials at all but using only the field strengths. This will be more
satisfactory since the field strengths are the only physically measurable
quantities and not the potentials. But the use of potentials greatly sim-
plifies the calculations and becomes a necessity when one wants to treat
the interaction and quantization of the electromagnetic field.

11.3 Quantization of the Electromagnetic Field

The quantization of the free field3 equation (11.20) is beset with certain
difficulties.

1. Equation (11.20) is equivalent to Maxwell’s equations only if it is
considered in conjunction with the Lorentz condition (11.19). On
the other hand, the canonical quantization procedure, followed hith-
erto, is applicable only to the independent fields. In the present case,
there are four fields but all of them are not free and they are subject
to Lorentz restriction (11.19).

2. To maintain the Lorentz invariance of the four-vector field Aµ, the
introduction of the matrix tensor gµν imposes opposite signs to the
zeroth component A0 and the other three components A1, A2, A3.
This makes it difficult to treat all the four Aµ’s on the same footing.

First let us treat all the four Aµ’s as independent and Hermitian and
ignore the difference in sign of A0 and the Lorentz constraint (11.19). The
difficulties 1 and 2 are overcome by a procedure, prescribed by Gupta and
Bleuler4.

3The electromagnetic field in a space region which is far removed from any sources
of the field is also called the radiation field.

4S.N. Gupta, Proc. Phys. Soc. A63, 681 (1950); K. Bleuler, Helv. Phys. Acta 23,
567 (1950).



11. The Electromagnetic Field 257

The plane wave solution of (11.20) is given by5

uλ(x) =
1√
V

1√
2ωk

ε(λ)(k)e−ik·x, (λ = 0, 1, 2, 3) (11.40)

with

k · x = ωkt− k · x; (11.41)

k2 = ω2
k − k2 = 0, ωk = |k| > 0. (11.42)

In Eq. (11.40), ε(λ)(k) (λ = 0, 1, 2, 3) denote a complete set of orthonor-
mal vectors in the Minkowski space for each value of k. The field operator
Aµ(x) can be expanded in terms of uλ(x).

Aµ(x) =
1√
V

∑
k

1√
2ωk

3∑
λ=0

ε(λ)
µ (k)

[
a(λ)(k)e−ik·x + a(λ)†(k)eik·x

]
.(11.43)

In Eq. (11.43), ε
(λ)
µ (k), λ = 0, 1, 2, 3 represent unit vectors in the four-

dimensional space which are normalized in a Lorentz invariant way, ε(0)

being time-like and ε(1), ε(2), ε(3), space-like.

ε(λ) · ε(λ) = ε(λ)
µ ε(λ

′)
µ = ε(λ)

µ gµνε(λ
′)

ν

= ε
(λ)
0 ε

(λ′)
0 − ε(λ)

1 ε
(λ′)
1 − ε(λ)

2 ε
(λ′)
2 − ε(λ)

3 ε
(λ′)
3

= gλλ
′
. (11.44)

Let us take advantage of the arbitrariness of the vector ε(λ) and choose
ε(3)(k) along the direction of k and the vectors ε(1)(k) and ε(2)(k) perpen-
dicular to k. Further, the x3 axis is chosen along k. With this choice, ε(1),
ε(2) denote the transverse polarization, ε(3), the longitudinal polarization
and ε(0), the scalar or time-like polarization. The scalar and longitudinal
photons are unphysical and only the transverse photons are allowed in
nature. Let us define the following quantities

Aµ(k) =

3∑
λ=0

ε(λ)
µ (k)a(λ)(k); A†µ(k) =

3∑
λ=0

ε(λ)
µ (k)a(λ)†(k). (11.45)

In terms of these quantities, the field variable Aµ(x) can be written as

Aµ(x) =
1√
V

∑
k

1√
2ωk

[
Aµ(k)e−ik·x +A†µ(k)eik·x

]
(11.46)

= A(+)
µ (x) +A(−)

µ (x), (11.47)

5The four-vectors are denoted by upright bold face letters like k, x and the three
vectors by italic bold face letters like k, x.
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where A
(+)
µ (x) and A

(−)
µ (x) represent the positive and negative frequency

parts of the field operator Aµ(x).

The operators Aµ(k) and A†ν(k′) obey the following commutation re-
lations.

[Aµ(k), A†ν(k′)]− = −gµνδ(k − k′), (11.48)

where gµν denotes the metric that we use in representing the four-vector.

The corresponding commutation relations for the annihilation and cre-

ation operators a(λ) and a(λ)†. are[
a(λ)†(k), a(λ′)†(k′)

]
−

=
[
a(λ)(k), a(λ′)(k′)

]
−

= 0; (11.49)[
a(λ)(k), a(λ′)†(k′)

]
−

= −gλλ′ δ(k − k′). (11.50)

Let us write more explicitly Eq. (11.50).[
a(0)(k), a(0)†(k′)

]
−

= −δ(k − k′); (11.51)[
a(i)(k), a(j)†(k′)

]
−

= δij δ(k − k′), i, j = 1, 2, 3. (11.52)

The interpretation of a and a† as annihilation and creation operators
for λ = 1, 2, 3, that is for longitudinal and transverse photons, poses no
problems but the relation for scalar photons will give problems because
of the minus sign on the right hand side of Eq. (11.51). One problem is
with respect to the norm of the scalar photon state and the other problem
is with respect to the negative energy contribution by the scalar photons.
Following the procedure analogous to the one adopted in the case of scalar
fields, one can get the following expression for the Hamiltonian.

H =
∑
k

ωk

[
3∑

λ=1

a(λ)†(k)a(λ)(k)− a(0)†(k)a(0)(k)

]
. (11.53)

Actually, there is a subtle difference. The number density operator for the

time-like photon (scalar photon) is not a(0)†(k)a(0)(k) but−a(0)†(k)a(0)(k).

11.4 The Gupta-Bleuler formulation

The above quantization procedure suffers from two defects.
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1. It ignores the Lorentz condition.

∂µAµ(x) = 0.

2. It assumes that all the field operators Aµ(x) are Hermitian. If they

are so, then the vacuum expectation value of Aµ(k)A†ν(k′) is

〈Φ0, Aµ(k)A†ν(k′)Φ0〉 = 〈A†µ(k)Φ0, A
†
ν(k′)Φ0〉

= −gµνδ(k − k′), (11.54)

which is positive for Aj(k)A†j(k), j = 1, 2, 3 and negative for

A0(k)A†0(k). This is an inconsistency within the theory. It is not
possible to exclude the time-like photons (scalar photons) since they
are required for the formulation of a relativistic invariant theory.

The above defects were rectified by Gupta and Bleuler (1) by insisting
that only the expectation values of the operators need to comply with the
classical relations but not the operators themselves and (2) by redefining
the scalar product using a metric operator η.

The norm |Φ| of a state Φ is usually defined by

|Φ| = 〈Φ|Φ〉. (11.55)

This is redefined using an indefinite metric operator η.

|Φ| = 〈Φ|η|Φ〉. (11.56)

Since the norm should be real, it follows that

η = η†.

The definition of the norm of a vector is somewhat relaxed. It needs
no longer be positive definite. It can be positive, negative or zero. But
only the first of these possibilities is physically meaningful and admits the
probability interpretation.

With this modified definition of norm, the expectation value of an
operator A becomes

〈A〉 = 〈Φ|ηA|Φ〉. (11.57)

Le us choose η in such a way that it commutes with Aj(x), j = 1, 2, 3
but anticommutes with A0(x).

[η,Aj(x)]− = 0, j = 1, 2, 3.

{η,A0(x)}+ = 0.
(11.58)
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Also [
η2, Aj

]
− = η [η,Aj ]− + [η,Aj ]− η = 0, j = 1, 2, 3.[

η2, A0

]
− = η {η,A0}+ − {η,A0}+ η = 0.

(11.59)

Thus η2 is a c-number that commutes with all the operators of the field
and so can be chosen to yield unity.

η2 = ηη† = 1.

11.4.1 The indefinite metric operator η

The metric operator η is so chosen to obey the commutation relations
(11.58) with the field operator Aµ. From Eq. (11.46), one can obtain the
commutation relations with the annihilation and creation operators6.

[η, aj(k)] = 0, j = 1, 2, 3.
{η, a0(k)} = 0.

(11.60)

Let us consider, for simplicity, a state Φ which consists of photons of
momentum k only. Then, in the occupation number representation, the
state Φ can be represented as

Φ = |n0, n1, n2, n3〉, nλ = nλ(k).

It is a simple exercise to obtain the matrix elements of aλ(k) and a†λ(k).

〈n′0, n′1, n′2, n′3|aλ(k)|n0, n1, n2, n3〉 =
√
nλ(k) δn′λ,nλ−1

∏
i6=λ

δni,n′i .(11.61)

〈n0, n1, n2, n3|a†λ(k)|n′0, n′1, n′2, n′3〉 =
√
nλ(k) δnλ,n′λ+1

∏
i6=λ

δni,n′i .(11.62)

The commutation relations (11.60) can be explicitly written as

〈n′0, n′1, n′2, n′3|ηaj(k)|n0, n1, n2, n3〉
= 〈n′0, n′1, n′2, n′3|aj(k)η|n0, n1, n2, n3〉, j = 1, 2, 3. (11.63)

〈n′0, n′1, n′2, n′3|ηa0(k)|n0, n1, n2, n3〉
= −〈n′0, n′1, n′2, n′3|a0(k)η|n0, n1, n2, n3〉. (11.64)

6The annihilation and creation operators are represented either as a(λ), a(λ)
†

or as
aλ, a

†
λ, using λ as a superscript or as a subscript, depending upon convenience.
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From Eqs. (11.61)–(11.64), we infer that η is a diagonal matrix whose
matrix elements are explicitly given below:

〈· · ·nj · · · |η| · · ·nj · · · 〉 = 〈· · ·nj + 1 · · · |η| · · ·nj + 1 · · · 〉,
j = 1, 2, 3. (11.65)

〈n0 · · · · · · |η|n0 · · · · · · 〉 = −〈n0 + 1 · · · · · · |η|n0 + 1 · · · · · · 〉.(11.66)

It follows that the square of the matrix element is unity.

|〈n0, n1, n2, n3|η|n0, n1, n2, n3〉|2 = 1 (11.67)

From the above discussion, we conclude that η is a diagonal matrix
with the matrix element

〈n′0, n′1, n′2, n′3|η|n0, n1, n2, n3〉 = (−1)n0

3∏
λ=0

δnλ,n′λ . (11.68)

If the state Φ consists of photons of several momenta k, then

〈Φ|η|Φ〉 = (−1)Sk
∏
k

3∏
λ=0

δnλ(k),n′λ(k), (11.69)

with
Sk =

∑
k

n0(k).

11.4.2 The Lorentz condition

The Lorentz condition explains the observed transversality of the elec-
tromagnetic waves. For the quantum theory to have the correct classical
limits, it is sufficient if the expectation values of the operators and not
the operators themselves obey the classical equations.

The Lorentz condition is

∂µAµ = 0.

It is sufficient if the expectation value obeys the Lorentz condition.

〈∂µAµ〉 = 〈Φ|η ∂µAµ|Φ〉 = 0. (11.70)

Expanding Aµ in terms of positive and negative frequency parts as shown
in Eq. (11.47), we get

〈Φ|η ∂µAµ|Φ〉 = 〈Φ|η ∂µA(+)
µ |Φ〉+ 〈Φ|η ∂µA(−)

µ |Φ〉 (11.71)
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Since

〈Φ, η ∂µA(−)
µ Φ〉 = 〈η ∂µA(+)

µ Φ,Φ〉, (11.72)

it is enough if the subsidiary condition∑
µ

∂µA(+)
µ Φ = 0 (11.73)

is obeyed. This yields the allowed states that satisfies the Lorentz condi-
tion. Let us proceed to find out the allowed states. From Eqs. (11.46)
and (11.47), we get

A(+)
µ (x) =

1√
V

∑
k

1√
2ωk

aλ(k)ε(λ)
µ (k)e−ik·x; (11.74)

∂µA
(+)
µ (x) =

1√
V

∑
k

−ikµ√
2ωk

aλ(k)ε(λ)
µ (k)e−ik·x. (11.75)

We have chosen the photon momentum k and the polarization direction
ε(3) along the x3 axis. So, ε(1) and ε(2) denote the transverse polarizations.
With this choice,

k1 = k2 = 0; k3 = −|k| = −ωk; k0 = ωk.

In the coordinate system, so chosen, the subsidiary condition yields

3∑
µ=0

∂µA(+)
µ (x) =

−i√
2V

∑
k

√
ωk

(
a(0)(k)− a(3)(k)

)
e−ik·x.(11.76)

The restriction is on the allowed states Φ of the field rather than a con-
dition on the operators Aµ, since Eq. (11.73) leads to the condition(

a(3)(k)− a(0)(k)
)

Φ = 0. (11.77)

The restriction is on the combination of longitudinal and scalar photons
and does not affect the transverse photons. It is possible to construct the
same set of transverse photons but different combinations of longitudinal
and scalar photons in accordance with Eq. (11.76). The different states
so constructed are related by gauge transformations. For a free field, the
gauge can be so chosen that only the transverse photons are present.

For free fields (i.e. with no charges present), the vacuum can be repre-
sented by the state Φ0, in which no photons of any kind are present. The
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vacuum can equally be described by any state that contains no transverse
photons but only an equal amount of longitudinal and scalar photons. The
latter description will merely correspond to a different choice of Lorentz
gauge.

The condition (11.77) makes the Hamiltonian (11.53) of the free fields
positive definite, since the free fields in Lorentz gauge contain only trans-
verse photons.

H =
∑
k

ωk(a
†
1a1 + a†2a2).

Review Questions

11.1 Show how Maxwell’s equations for electromagnetic waves can be written in
terms of scalar and vector potentials φ andA. Express the electromagnetic
wave equation in a relativistic covariant form by defining a four vector
potential Aµ. Show that the components of Aµ are not independent and
they are constrained by Lorentz condition.

11.2 What are the electromagnetic field tensors? Show how Maxwell’s equa-
tions can be written in terms of these field tensors.

11.3 What are the difficulties encountered in quantizing the electromagnetic
field Aµ and how are they overcome by the Gupta-Bleuler prescriptions?

Problems

11.1 Given the electromagnetic field tensors Fµν (contravariant tensor of sec-
ond rank), given by Eq. (11.28), write down explicitly the matrices for
F νµ and Fµν .

11.2 The electromagnetic field is described by specifying the electrical and
magnetic field strengths E and B at each point and their variation with
time. It is found convenient to express them in terms of scalar and vector
potentials φ and A by the following expressions:

B =∇×A E = −∇φ− 1

c

∂A

∂t
.

Show that φ and A do not form an unique set but there are more than
one set that yield the same value for the physically observable quantities
B and E.

11.3 Given the Lagrangian density L of the electromagnetic field Aµ,

L = −
∑
ν

1

2
∂νA

µ∂νAµ = −1

2

∑
ν

(
∂Aµ

∂xν

)2

,
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obtain the momentum canonically conjugate to Aµ and the Hamiltonian
density. Show that the field Aµ satisfies the field equation

2Aµ = 0.

Solutions to Problems

11.1 Since Fµν is an anti-symmetric matrix,

F νµ = −Fµν .

Fµν is a contravariant tensor of second rank, whereas Fµν is a covariant
tensor of second rank, obtained by lowering the indices.

Fµν = gµλgνρF
λρ.

F0k = g0µgkνF
µν = −F 0k, µ, ν = 0, 1, 2, 3; k = 1, 2, 3.

Fk0 = gkµg0νF
µν = −F k0, µ, ν = 0, 1, 2, 3; k = 1, 2, 3.

Fkl = gkmglnF
mn = F kl, k, l,m, n = 1, 2, 3.

To obtain the above relations, we have used the following values of the
metric tensors:

gµν = 0, µ 6= ν; g00 = 1; g11 = g22 = g33 = −1.

Using the above results, we write down explicitly the related antisymmetric
tensors of second rank, given Fµν by Eq. (11.28):

µ/ν→ 0 1 2 3

Fµν =

0
1
2
3


0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0

 .

ν/µ→ 0 1 2 3

F νµ =

0
1
2
3


0 −Ex −Ey −Ez
Ex 0 −Bz +By
Ey +Bz 0 −Bx
Ez −By +Bx 0

 .

µ/ν→ 0 1 2 3

Fµν =

0
1
2
3


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 .
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11.2 The scalar and vector potentials φ and A are not observable quantities
but only the magnetic and electrical field strengths are observable and
physically measurable quantities.

B =∇×A; E = −∇φ− 1

c

∂A

∂t
.

Since curl div f(x, t) = 0, where f(x, t) is a scalar function, it is possible
for two vector potentials A and A′ = A− divf to satisfy the equation for
B, yielding the same value for B.

B = curlA = curlA′,

since curlA′ = curlA− curl divf = curlA.

For the simultaneous transformation

A −→ A′ = A−∇f ;

φ −→ φ′ = φ+
1

c

∂f

∂t
;

we get

B = ∇×A′ =∇×A.

E = −∇φ′ − 1

c

∂A′

∂t
= −∇φ− 1

c
∇∂f
∂t
− 1

c

∂

∂t
(A−∇f)

= −∇φ− 1

c

∂A

∂t
,

since ∇∂f
∂t = ∂

∂t∇f because the differential operators ∇ and ∂
∂t commute.

In the four-vector notation,

Aµ (µ = 0, 1, 2, 3) : φ,A,

and

A′
µ

= Aµ +
∂f

∂xµ
.

The last equation represents

φ′ = φ+
1

c

∂f

∂t
A′ = A−∇f.

This property is known as the invariance of electromagnetic field under
gauge transformation.

11.3 Given the Lagrangian density L of the electromagnetic field Aµ,

L = −
∑
ν

1

2
∂νA

µ∂νAµ = −1

2

∑
ν

(
∂Aµ

∂xν

)2

,



266 Textbook of Relativistic Quantum Physics

the momentum canonically conjugate to Aµ is given by

Πµ =
∂L

∂Aµ
∂t = −∂A

µ

∂x0
= −∂0A

µ.

The Hamiltonian density is given by

H = ΠµȦ
µ −L

= −
(
∂Aµ

∂x0

)2

− 1

2

∑
ν

(
∂Aµ

∂xν

)2

= −
(
∂Aµ

∂x0

)2

+
1

2

(
∂Aµ

∂x0

)2

− 1

2

∑
k

(
∂Aµ

∂xk

)2

= −1

2

(
∂Aµ

∂x0

)2

− 1

2

∑
k

(
∂Aµ

∂xk

)2

To deduce the field equation, we need to construct the Euler-Lagrange
equation with the given Lagrangian density.

∂L

∂Aµ
− ∂

∂xν
∂L

∂(∂νAµ)
= 0. (11.78)

With the given Lagrangian density, we have

∂L

∂Aµ
= 0. (11.79)

∂

∂xν
∂L

∂(∂νAµ)
= − ∂

∂xν
∂Aµ

∂xν
=
∂2Aµ

∂xν2 . (11.80)

Substituting (11.79) and (11.80) into Eq. (11.78), we get

∂2Aµ

∂xν2 = 0. (11.81)

Equation (11.81) can be written more explicitly as

∂2Aµ

∂x02 −
∑
k

∂2Aµ

∂xk
2 = 0 or 2Aµ = 0.

It may be mentioned here that all the four fields Aµ, µ = 0, 1, 2, 3 are
treated as free fields and the Lorentz condition has not been imposed.



Chapter 12

Interaction between Fields

Till now, we have considered only free fields but all the phenomena that
we observe arise from interaction of fields. Interaction between electron
and photon fields give rise to a variety of phenomena such as Compton
effect, electron-positron pair creation, electron-positron pair annihilation,
electron-electron scattering, Bremmstrahlung and a host of other pro-
cesses, that we have discussed in Chap. 6.

It is an extremely difficult problem to solve the coupled non-linear field
equations or the field equations with a source term. So, attempts have
been made to solve the problem of interacting fields using perturbation
theory. The Hamiltonian of the system is divided into that of the free
fields plus an interaction Hamiltonian which is treated as a perturbation.
This is justifiable if the interaction is sufficiently weak as in the case of
electromagnetic interaction with a coupling constant α ≈ 1/137. This ap-
proach has been highly successful in treating the quantum electrodynamic
processes.

The Lagrangian density for free fields consists of terms which are
quadratic in field functions which are Fourier analyzed in terms of annihi-
lation and creation operators but no perceptible changes will be observed.
In the case of interaction between fields, one type of particles will be anni-
hilated and either the same type of particles with different momenta and
spin states or another type of particles will be created leading to observ-
able changes in the system. The total Lagrangian L and the Lagrangian
density L can be written as a sum of free field Lagrangian (L0,L 0) and

267
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interaction Lagrangian (Li,L i).

L = L0 + Li; L = L 0 + L i. (12.1)

In a similar way, one can write the Hamiltonian H and the Hamiltonian
density H as a sum of the free-field Hamiltonian and the interacting field
Hamiltonian.

H = H0 +Hi; H = H 0 + H i. (12.2)

Then, it is possible to use the time-dependent perturbation formalism
that we have studied in Quantum Mechanics1 for the development of
perturbation theory. The free-field Hamiltonian H0 can be considered as
the unperturbed Hamiltonian and the interaction Hamiltonian Hi can be
treated as the perturbation. The interaction picture is found to be most
convenient for the development of the perturbation theory.

12.1 The Tomonaga-Schwinger Equation

Consider the state vector Φ that obeys the Schrödinger equation.

(H0 +Hi)Φ(t) = i~
∂Φ(t)

∂t
, (12.3)

where H0 denotes the Hamiltonian of the non-interacting fields (i.e. free
fields) and Hi denotes the interaction between fields. In the Schrödinger
picture, the state vector Φ(t) is time-dependent and the operators H0, Hi

are time-independent. The state vector Φ, in the absence of interaction
(Hi = 0) describes a situation in which a set of definite number of free
particles with definite momentum and spin travel through space without
any interaction with one another. The interaction Hamiltonian Hi causes
interaction of these particles with each other and among themselves.

Let

Ψ(t) = eiH0t/~Φ(t). (12.4)

Then differentiating (12.4), we get

i~
∂Ψ(t)

∂t
= HI(t)Ψ(t), (12.5)

1The reader may refer to chap. 6 and 7 of my book: V. Devanathan, Quantum
Mechanics, Narosa Publishing House, New Delhi (2005), for a better understanding.



12. Interaction between fields 269

where

HI(t) = eiH0t/~Hie
−iH0t/~ (12.6)

is the interaction energy operator in the interaction picture. HI(t) is ex-
plicitly time-dependent in contrast to the Schrödinger operator Hi which
is time-independent. In general, the operator OI in the interaction picture
is related to the Schrödinger operator OS by the relation

OI = eiH0t/~OSe−iH0t/~, (12.7)

which, on differentiation, yields the relation

i~
∂OI(t)
∂t

= [OI , H0]. (12.8)

If we take the operator O = H0, then H0 is the same in both the pictures,
Schrödinger and interaction.

(H0)int = (H0)S .

The Hamiltonian H0 contains only free fields. This assures that the field
operators satisfy the free-field equations in the interaction picture also
whereas the time-dependence of the state vector Ψ(t) is determined by
the interaction energy HI(t) only.

The interaction picture has distinct advantages. 1. Since the field
operators satisfy free field equations, invariant commutation relations can
be written down for all times. 2. Equation (12.5) can be generalized
to hold in four-dimensional space-time so as to make it co-variant under
Lorentz transformation to yield the Tomonaga-Schwinger equation2.

i~c
δΨ(σ)

δσ(x)
= H I(x)Ψ(σ), (12.9)

where H I(x) denotes the Hamiltonian density at space-time point x and
σ represents the space-like surfaces in the four-dimensional space-time.

12.2 The invariant perturbation theory

The differential equation (12.5) can be written as an integral equation.

Ψ(t) = Ψ(t0)− i

~

∫ t

t0

dt′HI(t
′)Ψ(t′). (12.10)

2S.S. Schweber, H. A. Bethe and F. D. Hoffmann, Mesons and Fields, Vol 1, p.167-
169, Row, Peterson and Co. (1956).
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The integral equation incorporates the initial condition that at t = t0, the
state vector Ψ(t) = Ψ(t0). One can define a time-development operator
U(t, t0) such that

Ψ(t) = U(t, t0)Ψ(t0), Ψ(t0) = U−1(t, t0)Ψ(t), (12.11)

with

U(t0, t0) = 1.

The time-development operator U(t, t0) is a unitary operator that pre-
serves the normalization of the state vectors Ψ(t). The operator U(t, t0)
satisfies the following differential equation

i~
∂U(t, t0)

∂t
= HI(t)U(t, t0), (12.12)

the hermitian conjugate of which can be written as

−i~∂U
†(t, t0)

∂t
= U †(t, t0)HI(t), (12.13)

since HI(t) is Hermitian. It can be easily verified that U(t, t0) is a unitary
operator

U(t, t0) = U †(t0, t) = U−1(t0, t), (12.14)

and obeys the group property

U(t, t0) = U(t, t1)U(t1, t0). (12.15)

The differential equation (12.12) can be written as an integral equation.∫ t

t0

dU(t1, t0)

dt1
dt1 =

1

i~

∫ t

t0

HI(t1)U(t1, t0) dt1,

U(t, t0)− U(t0, t0) =
1

i~

∫ t

t0

HI(t1)U(t1, t0) dt1,

U(t, t0) = 1 +
1

i~

∫ t

t0

HI(t1)U(t1, t0) dt1. (12.16)

The last step is obtained by substituting the value U(t0, t0) = 1. Equation
(12.16) is the integral equation for U(t, t0) and by repeated iteration of
U(t, t0) that occurs within the integral, we obtain an infinite series. Since
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HI(t) is a small perturbation, the successive terms contribute less and less
and so the series can be terminated with second or third order justifiably.

U(t, t0) = 1 +
1

i~

∫ t

t0

HI(t1) dt1

+

(
1

i~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2)U(t2, t0)

= 1 +
1

i~

∫ t

t0

HI(t1) dt1

+

(
1

i~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) + · · · . (12.17)

The infinite series (12.17) can be written in a compact form as shown
below.

U(t, t0) =

∞∑
n=0

U (n)(t, t0), (12.18)

where

U (0)(t, t0) = 1, (12.19)

and

U (n)(t, t0) = (i~)−n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnHI(t1)HI(t2) · · ·HI(tn), (12.20)

with

t1 > t2 > · · · > tn−1 > tn. (12.21)

Dyson3 observed that this is essentially an integral over the whole time
interval from t0 to t with the restriction that tj be earlier than tj−1, j ≤ n.
One can remove this restriction by introducing the chronological operator
P which rearranges a product of time-labeled operators in a chronological
time sequence with the latest time occurring first.

P (HI(t1)HI(t2) · · ·HI(tn)) = HI(ti)HI(tj) · · ·HI(tk),

ti > tj > · · · > tk. (12.22)

3F. J. Dyson, Phys. Rev., 75, 486, 1736 (1949).
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The symbol P denotes Dyson’s Chronological Operator. Using the symme-
try of the integrand and the fact that there are n! possible permutations
of the ordering of time, we obtain

U (n)(t, t0) =
(i~)−n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnP (HI(t1)HI(t2) · · ·HI(tn)) .(12.23)

Thus

U(t, t0) =
∞∑
n=0

(i~)−n

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnP (HI(t1)HI(t2) · · ·HI(tn)) .(12.24)

Equation (12.24) can be rewritten in a form which indicates the covari-
ance better by expressing the interaction Hamiltonian HI(t) in terms of
interaction Hamiltonian density H I(x)

HI(t) =

∫
d3xH I(x),

and converting the integral over time into a four-dimensional integral since∫
dtd3x =

∫
d4x/c.

U(t, t0) =

∞∑
n=0

(i~c)−n

n!

∫
d4x1

∫
d4x2 · · ·

∫
d4xn

×P (H I(x1) H I(x2) · · ·H I(xn)) , (12.25)

where x1,x2, · · · denote the space-time coordinates. Equation (12.25)
forms the basis of the modern covariant perturbation theory.

12.3 The S-matrix

The time development operator U(t, t0) with t0 → −∞ and t → +∞
is often called the S−matrix or collision operator. It is also called the
scattering matrix.

S = U(+∞,−∞) or Ψ(+∞) = SΨ(−∞), (12.26)

where Ψ(−∞) and Ψ(+∞) define asymptotically the incoming and out-
going states.

We usually specify the initial and final states by the eigenfunctions of
H0 since HI is zero at t = ±∞. We invoke the adiabatic hypothesis to
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slowly switch on the interaction HI at t = −∞ to allow for self-interaction
of the particles although they are well-separated. This process is known as
“dressing up” of the particles with their virtual quanta and develop into
real physical particles. Then the particles interact and make a transition
to the final state. Then the interaction Hamiltonian is slowly switched off
and the final state emerges as a different eigenstate of the unperturbed
Hamiltonian H0.

If Φi and Φf denote the initial and final state of the system, then

Sfi = 〈Φf |S|Φi〉 = 〈Φf |U(+∞,−∞)|Φi〉
= 〈Φf |U(+∞, 0)U(0,−∞)|Φi〉
= 〈Ψ−f |Ψ

+
i 〉, (12.27)

where Ψ+
i denotes the incoming state and Ψ−f , the outgoing state.

12.4 Reduction of the S-matrix

12.4.1 Decomposition into normal products

Each term in the perturbation expansion (12.25) of the S-matrix can give
rise to a variety of processes, both virtual as well as real. Dyson4 and
Wick5 have shown how to express the chronological product

P (H I(x1) H I(x2) · · ·H I(xn))

that occurs in the S-matrix in a form that represents explicitly all the
physical processes. This is known as the decomposition of the chrono-
logical product into normal products. The normal product is defined as
the product of free-particle annihilation and creation operators in which
all the annihilation operators appear to the right of creation operators.
Then, for the given initial and final states, there exists only one normal
product that gives a non-zero matrix element between the specified initial
and final states. Then the decomposition of S-matrix into normal prod-
ucts is to list all the matrix elements of S in a representation in which
all the free particle occupation numbers are diagonal. Then a Feynman
diagram is simply a concise way of representing a normal product.

Let us now consider how to reduce the S-matrix into normal products,
following the algebraic method of Wick. Consider a product of annihila-
tion and creation operators. To arrange it as a normal product, all the

4F. J. Dyson, Phys. Rev., 82, 428 (1951); 83, 608 (1951).
5G.C. Wick, Phys. Rev., 80, 268 (1950).
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creation operators should be shifted to the left of annihilation operators.
This can be done using the commutation relations for scalar field (Boson)
operators and anticommutation relations for Dirac field (Fermion) opera-
tors, assuming that the commutators and anticommutators are zero. The
effect is to include a change in sign when the anticommuting Dirac field
operators are shifted from one position to another. Denoting the Scalar
field operators by φ and the Dirac field operators by ψ and expressing
them as a sum of positive and negative frequency parts φ = φ+ + φ− and
ψ = ψ+ + ψ−, we get6

N
(
φ+(x)φ−(y)

)
= N

(
φ−(y)φ+(x)

)
= φ−(y)φ+(x). (12.28)

N
(
ψ+
α (x)ψ̄−β (y)

)
= −N

(
ψ̄−β (y)ψ+

α (x)
)

= −ψ̄−β (y)ψ+
α (x). (12.29)

N
(
ψ+
α (x)ψ+

β (y)
)

= −N
(
ψ+
β (y)ψ+

α (x)
)

= ψ+
α (x)ψ+

β (y) = −ψ+
β (y)ψ+

α (x). (12.30)

The normal product operation obeys the distribution law.

N
(
φ+(x)

{
φ+(y)+φ−(z)

})
= N

(
φ+(x)φ+(y)

)
+N

(
φ+(x)φ−(z)

)
. (12.31)

Using the commutation and anticommutation rules, the definition of
normal product and the distribution law, one can arrange the product of
any two operators as normal product.

φ(x)φ(y) =
(
φ+(x) + φ−(x)

) (
φ+(y) + φ−(y)

)
= φ+(x)φ+(y) + φ+(x)φ−(y) + φ−(x)φ+(y) + φ−(x)φ−(y)

= φ+(x)φ+(y) + φ−(y)φ+(x) + [φ+(x), φ−(y)]−

+φ−(x)φ+(y) + φ−(x)φ−(y)

= N
(
φ+(x)φ+(y)

)
+N

(
φ−(x)φ+(y)

)
+N

(
φ−(x)φ+(y)

)
+N

(
φ−(x)φ−(y)

)
+ [φ+(x), φ−(y)]−

= N (φ(x)φ(y)) + [φ+(x), φ−(y)]−

= N (φ(x)φ(y)) + i~c∆+(x− y). (12.32)

6It may be recalled that the positive frequency operators φ+, ψ+, ψ̄+ consist of anni-
hilation operators whereas the negative frequency operators φ−, ψ−, ψ̄− carry creation
operators.
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In deducing Eq. (12.32), we have used the relation

φ+(x)φ−(y) = φ−(y)φ+(x) + [φ+(x), φ−(y)]−

in the third step and the commutation relation

[φ+(x), φ−(y)]− = i~c∆+(x− y)

in the last step.
Similarly, for fermion operators, one gets

ψ̄α(x)ψβ(y) =
(
ψ̄+
α (x) + ψ̄−α (x)

) (
ψ+
β (y) + ψ−β (y)

)
= ψ̄+

α (x)ψ+
β (y) + ψ̄+

α (x)ψ−β (y) + ψ̄−α (x)ψ+
β (y)

+ψ̄−α (x)ψ−β (y)

= ψ̄+
α (x)ψ+

β (y)− ψ−β (y)ψ̄+
α (x) + {ψ̄+

α (x), ψ+
β (y)}+

+ψ̄−α (x)ψ+
β (y) + ψ̄−α (x)ψ−β (y)

= N
(
ψ̄+
α (x)ψ+

β (y)
)

+N
(
ψ̄+
α (x)ψ−β (y)

)
+N

(
ψ̄−α (x)ψ+

β (y)
)

+N
(
ψ̄−α (x)ψ−β (y)

)
+{ψ̄+

α (x), ψ+
β (y)}+

= N
(
ψ̄α(x)ψβ(y)

)
− iS−βα(y− x), (12.33)

using the anticommutation relation {ψ̄+
α (x), ψ+

β (y)}+ = −iS−βα(y−x) for
Fermion operators.

Using similar algebraic manipulations, we get

ψα(x)ψ̄β(y) = N
(
ψα(x)ψ̄β(y)

)
− iS+

αβ(x− y); (12.34)

ψ(x)ψ(y) = N (ψ(x)ψ(y)) ; (12.35)

ψ̄(x)ψ̄(y) = N
(
ψ̄(x)ψ̄(y)

)
; (12.36)

φ(x)ψ(y) = N (φ(x)ψ(y)) . (12.37)

12.4.2 Wick’s chronological product

Wick’s chronological operator T is similar to Dyson’s chronological opera-
tor P and arranges the time-labeled field operators A,B,C,D · · · accord-
ing to the time sequence, the operators having the earlier times on the
right and the operators having the later times on the left. The only dif-
ference between these two chronological operators is that Wick’s chrono-
logical operator includes in its definition the sign of the permutation of
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Fermion operators in making such an arrangement.

T (ABCD · · · ) = δPP (ABCD · · · ). (12.38)

The whole product carries the plus or minus sign δP according to the even
or odd number of permutations that the Fermion operators have to make
in going from one side to the other in the process of time-ordering.

We wish to reiterate that the chronological operator T arranges the
Boson and Fermion operators according to the time sequence assuming
the commutation and anticommutation relations between these operators
to be zero.

T (φ(x)φ(y)) =

{
φ(x)φ(y), if x0 > y0

φ(y)φ(x), if y0 > x0.
(12.39)

T (ψ(x)ψ(y)) =

{
ψ(x)ψ(y), if x0 > y0

−ψ(y)ψ(x), if y0 > x0.
(12.40)

T
(
ψ(x)ψ̄(y)

)
=

{
ψ(x)ψ̄(y), if x0 > y0

−ψ̄(y)ψ(x), if y0 > x0.
(12.41)

In the above equations, the suffix 0 indicates that x0, y0 are the time
components of the space-time coordinates x,y.

12.4.3 Wick’s contractions

The basic problem is how to express Wick’s chronological product in terms
of a sum of normal products. For this, we introduce the notion of con-
traction between any two factors, known as Wick’s contraction. The
contraction represents the commutator or anticommutator bracket that
arises from switching the factors in going from a chronological product to
normal products.

T (AB) = A•B• +N(AB), (12.42)

where A•B• represents the contracted pair. Some authors use the sym-
bol of connecting bracket underneath the two operators to denote the
contracted pair and write Eq. (12.42) as

T (AB) = ABxy +N(AB),

where ABxy denotes the contracted pair, but we shall use the symbol A•B•

to denote Wick’s contraction. Using Eq. (12.42) as the definition con-
tracted pair, let us consider some simple cases and show that the con-
tracted pair represents a commutation or anticommutation bracket which,
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in turn, denotes a propagator.
For x0 > y0,

φ+•(x)φ−
•
(y) = T

(
φ+(x)φ−(y)

)
−N

(
φ+(x)φ−(y)

)
= φ+(x)φ−(y)− φ−(y)φ+(x)

=
[
φ+(x), φ−(y)

]
−

= i~c∆+(x− y). (12.43)

For y0 > x0,

φ+•(x)φ−
•
(y) = T

(
φ+(x)φ−(y)

)
−N

(
φ+(x)φ−(y)

)
= φ−(y)φ+(x)− φ−(y)φ+(x)

= 0. (12.44)

For x0 > y0,

φ•(x)φ•(y) = T (φ(x)φ(y))−N (φ(x)φ(y))

= φ(x)φ(y)−N (φ(x)φ(y))

= i~c∆+(x− y), using Eqn. (12.32). (12.45)

For y0 > x0,

φ•(x)φ•(y) = T (φ(x)φ(y))−N (φ(x)φ(y))

= φ(y)φ(x)−N (φ(x)φ(y))

= i~c∆+(y− x), using Eqn. (12.32). (12.46)

In a similar way, we can obtain the results for Fermion contracted pairs.
For x0 > y0,

ψ•α(x)ψ̄•β(y) = T
(
ψα(x)ψ̄β(y)

)
−N

(
ψα(x)ψ̄β(y)

)
= ψα(x)ψ̄β(y)−N

(
ψα(x)ψ̄β(y)

)
= −iS+

αβ(x− y), using Eqn. (12.34). (12.47)

For y0 > x0,

ψ•α(x)ψ̄•β(y) = T
(
ψα(x)ψ̄β(y)

)
−N

(
ψα(x)ψ̄β(y)

)
= −ψ̄β(yψα(x))−N

(
ψα(x)ψ̄β(y)

)
= iS−αβ(x− y), using Eqn. (12.33). (12.48)

Equations (12.47) and (12.48) together yield the Feynman propagator
KF (x− y).

ψ•α(x)ψ̄•β(y) = KF αβ (x− y). (12.49)
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12.4.4 Wick’s theorem

Wick has generalized the Wick’s contraction formula (12.42) for a product
of a large number of field operators A(xa)B(xb)C(xc) · · ·Z(xz).

T (ABCD · · ·WXY Z) = N(ABCD · · ·WXY Z)

+N (A•B•C · · ·Z) +N (A•BC• · · ·Z) + · · ·+N (A · · ·XY •Z•)
+N (A•B•C••D•• · · ·WXY Z) + · · ·+N(ABCD · · ·W •X•Y ••Z••)
+ · · ·+N (A•B• · · ·Y •···•Z•···•) (12.50)

The right hand side of Eq. (12.50) consists of normal products with no
contractions, with all possible contractions of one pair, two pairs, three
pairs and so on. Different contractions are distinguished by using single
dot, two dots, three dots and so on as superscripts. Equation (12.50) is
known as Wick’s theorem. It is proved by the method of induction: If it
is true for a product of n operators, it can be shown to be true for n+ 1
operators.

The contractions are mere numbers and not operators. In Eq. (12.50),
although they are shown within the normal-ordered products, they can
be pulled out of the normal ordered products.

The S-matrix expansion consists of time-ordered product of normal-
ordered operators.

T (H I(x1) · · ·H I(xn)) = T (N(AB · · · )x1 · · ·N((AB · · · )xn) . (12.51)

Wick’s theorem (12.50) can be extended to include such mixed T-products
as shown in Eq. (12.51). In order to avoid commutation or anticommu-
tation between the operators at the same space-time points, the creation
operators are given a small increment in time ε over the annihilation
operators so that the time ordering in each term coincides with normal
ordering. At the end, ε can be put to zero. This yields

T (N(AB · · · )x1 · · ·N((AB · · · )xn)

= T ((AB · · · )x1 · · · ((AB · · · )xn)no e.t.c. , (12.52)

where the right hand side is expanded using Wick’s theorem (12.50) with
no equal-time contractions (no e.t.c.).
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12.5 From S-matrix expansion to Feynman dia-
grams

The foregoing discussion on the reduction of the S-matrix into normal
products using Wick’s theorem will become clearer by considering specific
examples in QED. Given the initial and final states, how to pick out the
relevant terms in the S-matrix expansion of a given order to write down
the transition amplitudes and draw the corresponding Feynman diagrams.

12.5.1 Interaction with external electromagnetic field

Given the interaction term

H I(x) = jµ(x)Aeµ(x) = ψ̄(x)γµψ(x)Aeµ(x) = ψ̄(x)A/e(x)ψ(x),

we can write down the S-matrix expansion as

S = 1 +

(
−ie
~c

)∫
d4x1N(ψ̄(x)A/e(x)ψ(x))

+

(
−ie
~c

)2 1

2!

∫
d4x1d

4x2T
{
N
(
ψ̄(x1)A/e(x1)ψ(x1)

)
× N

(
ψ̄(x2)A/e(x2)ψ(x2)

)}
+ · · · . (12.53)

First order term in S-matrix

Let us consider the first order term in normal order form explicitly in
terms of the positive and negative frequency (energy) parts ψ−(x) and
ψ+(x).

N(ψ̄(x)A/e(x)ψ(x)) = N
{

(ψ̄+(x) + ψ̄−(x))A/e(x)(ψ+(x) + ψ−(x)
}

= ψ̄+(x)A/e(x)ψ+(x)− ψ−(x)A/e(x)ψ̄+(x)

+ψ̄−(x)A/e(x)ψ+(x) + ψ̄−(x)A/e(x)ψ−(x).(12.54)

Let us use the Feynman convention of representing electron by an arrow
pointing upwards (forward in time) and positron by an arrow pointing
downwards (backward in time) as shown in Fig. 12.1. The positive and
negative frequency parts of ψ(x) and ψ̄(x) denote the following events:

ψ+(x) : annihilation of electron
ψ−(x) : creation of positron
ψ̄+(x) : annihilation of positron
ψ̄−(x) : creation of electron
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time
•

ψ+(x)

•
ψ−(x)

•

ψ̄+(x)

•
ψ̄−(x)

Figure 12.1: Pictorial representation of ψ+(x), ψ−(x), ψ̄+(x), ψ̄−(x).

Let us now represent the various terms in Eq. (12.54) by Feynman
diagrams as shown in Fig. 12.2. They represent (a) the pair annihila-
tion (b) the positron scattering (c) the electron scattering and (d) the
pair creation. These are the basic vertices and all the real processes in-
volving photons, electrons and positrons are built out of them. Energy
and momentum are conserved at each vertex but the relativistic energy-
momentum relation for all the three particles participating in a vertex will
not be simultaneously satisfied. So, all the three particles participating
in a vertex will not be real and at least one of them has to be virtual for
which the energy-momentum relation need not be satisfied. However, if
the external electromagnetic interaction is the Coulomb potential (virtual
photon), then the processes (b) and (c) representing positron scattering
and electron scattering are possible. For any real process, there must be
over-all energy-momentum conservation besides conservation of energy
and momentum at each vertex.

We shall now consider the positron scattering by Coulomb potential
as an example of the first-order process and show that we get the same
scattering amplitude as obtained earlier by Feynman’s method. The ini-
tial state |i〉 is specified by a positron of momentum pi and spin state si
and the final state |f〉 by a positron of momentum pf and spin state sf .

|i〉 = d†si(pi)|0〉; |f〉 = d†sf (pf )|0〉.

The matrix element for the first order transition from an initial state to
a final state is given by

M = 〈f |S(1)|i〉

= − ie
~c

∫
d4x1〈f |N(ψ̄(x1)A/e(x1)ψ(x1))|i〉

= − ie
~c

∫
d4x1〈0|dsfN(ψ̄(x1)A/e(x1)ψ(x1))d†si |0〉. (12.55)
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e−

e−

×

ψ̄−(x)A/e(x)ψ+(x)
(c) Electron scattering

e+

e+

×

ψ̄−(x)A/e(x)ψ̄+(x)
(b) Positron scattering

Time e+ e−

×
ψ̄−(x)A/e(x)ψ−(x)

(d) Pair creation

e+e−

×

ψ̄+(x)A/e(x)ψ+(x)
(a) Pair annihilation

Figure 12.2: Feynman diagrams representing basic vertices in QED.

In the expansion of the normal product N(ψ̄(x1)A/e(x1)ψ(x1)), only the
term

−ψ−β (x1)A/eψ̄+
α (x1)

will contribute to the process of positron scattering by an external poten-
tial A/e. The operator ψ̄+

α (x1) will destroy the positron in the initial state
and ψ−β (x1) will create the positron in the final state. Since

ψ−β (x1) =
1

(2π)3/2

∫
p0

d3p
1√
2Ep

2∑
r=1

d†r(p)vr(p)eip·x1 , (12.56)

ψ̄+
α (x1) =

1

(2π)3/2

∫
p′0

d3p′
1√
2Ep′

2∑
s=1

ds(p
′)v̄s(p

′)e−ip
′·x1 , (12.57)
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a/

pf e+

pi

q=pf−pi

e+

×

Figure 12.3: Scattering of positron by an external Coulomb field a/. pi and pf
denote the momenta of the incoming and scattered positron and q, the three-
momentum transfer to the positron.

we get

M =
ie

~c
1

(2π)3

∫
d4x1

∫
d3p

∫
d3p′

1,2∑
r,s

〈0|dsf (pf )d†r(p)ds(p
′)d†si(pi)|0〉

× 1√
2Ep2Ep′

v̄s(p
′)A/e(x1)vr(p)ei(p−p′)·x1 . (12.58)

It can be easily verified that

〈0|dsf (pf )d†r(p)ds(p
′)d†si(pi)|0〉 = δrsf δssiδ(p− pf )δ(p

′ − pi). (12.59)

Substituting (12.59) into Eq. (12.58) and integrating over d3p and d3p′,
we obtain

M =
ie

~c
1

(2π)3

1√
2Epi2Epf

∫
d4x1v̄si(pi)A/

e(x1)vsf (pf )ei(pf−pi)·x1 .(12.60)

Using the Fourier transform relation

a/(q) =
1

(2π)4

∫
A/e(x1)eiq·xd4x,

we obtain the matrix element in the momentum representation.

M =

(
ie

~c

)
2π√

2Epi2Epf
v̄si(pi)a/(pf − pi)vsf (pf ). (12.61)

This is exactly the matrix element that one would have obtained in
Feynman’s theory. From the equation obtained for the matrix element,
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one can frame the rule for drawing the Feynman diagram in momentum
space for positron scattering. The initial and final states follow the path
sequence. If we are considering positron scattering, the final state occurs
at the bottom of the diagram (with time flowing upwards) as indicated in
Fig. 12.3.

Thus we have established the connection between the field theoretical
formalism and the much simpler Feynman formalism developed intuitively
by him.

12.5.2 Second order term in S-matrix

Let us now consider the second order term in the S-matrix and show how
helpful is Wick’s theorem in expanding it into a sum of normal products
which can be used to study a large variety of quantum electrodynamic
processes. The second order term involves a product of two H I(x) and
the basic vertex diagrams which we obtained in the first order can be
combined in a meaningful way to yield Feynman diagrams that represent
real processes.

Using Wick’s theorem, let us expand the second order term in the
S-matrix as a sum of normal products.

T (H I(x1)H I(x2))

= T
{
N
(
ψ̄(x1)A/(x1)ψ(x1)

)
N
(
ψ̄(x2)A/(x2)ψ(x2)

)}
= NA +NB +NC +ND +NE +NF +NG +NH , (12.62)

where

NA = N
(
ψ̄(x1)A/(x1)ψ(x1)ψ̄(x2)A/(x2)ψ(x2)

)
, (12.63)

NB = N
(
ψ̄(x1)A/(x1)ψ•(x1)ψ̄•(x2)A/(x2)ψ(x2)

)
, (12.64)

NC = N
(
ψ̄•(x1)A/(x1)ψ(x1)ψ̄(x2)A/(x2)ψ•(x2)

)
, (12.65)

ND = N
(
ψ̄(x1)γαA•α(x1)ψ(x1)ψ̄(x2)γαA•α(x2)ψ(x2)

)
, (12.66)

NE = N
(
ψ̄(x1)γαA•α(x1)ψ••(x1)ψ̄••(x2)γαA•α(x2)ψ(x2)

)
, (12.67)

NF = N
(
ψ̄•(x1)γαA••α (x1)ψ(x1)ψ̄(x2)γαA••α (x2)ψ•(x2)

)
, (12.68)

NG = N
(
ψ̄•(x1)A/(x1)ψ••(x1)ψ̄••(x2)A/(x2)ψ•(x2)

)
, (12.69)

NH = N
(
ψ̄•(x1)γαA••α (x1)ψ•••(x1)ψ̄•••(x2)γαA••α (x2)ψ•(x2)

)
. (12.70)

The first term NA is not very interesting. It corresponds to two dis-
connected vertex diagrams and does not represent any real process.

The second and third termsNB andNC give identical results since per-
mutation of Fermion operators in the two groups (ψ̄A/ψ)x1 and (ψ̄A/ψ)x2
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is even and the space-time variables are dummy variables that are inte-
grated. Expressions (12.64) and (12.65) contain one Fermion contraction
which represents the Fermion propagator from one space-time point to an-
other besides two uncontracted Fermion operators and two uncontracted
photon operators. The uncontracted operators annihilate the particles
that are present initially and emit the particles that are present finally.
Since the operators are arranged in normal order, it is easy to pick out
the terms that contribute to a given process. The terms NB and NC

can describe several processes involving two Fermions and two photons
such as Compton scattering by electron, Compton scattering by positron,
electron-positron pair annihilation into two photons and electron-positron
pair creation by two photons.

(i) γ + e− → γ + e−, (ii) γ + e+ → γ + e+,
(iii) e++ e− → γ + γ, (iv) γ + γ → e++ e−.

The fourth term ND consists of four uncontracted Fermion operators
and one photon-photon contraction representing the photon propagation
between the two Fermions. By picking out suitable Fermion annihila-
tion and creation operators from the uncontracted Fermion operators, we
can describe electron-electron scattering, electron-positron scattering and
positron-positron scattering. For each of these processes, there will be
two Feynman diagrams. For electron-electron and positron-positron scat-
tering, there will be two Feynman amplitudes, one for direct scattering
and another for exchange scattering with a relative change in sign. In
non-relativistic quantum mechanics, the relative minus sign arises from
the use of antisymmetric wave function of Fermions. In the field theory,
this is provided by the anticommutative property of the Fermion field
operators. In the case of electron-positron scattering (known as Bhabha
scattering), there are also two Feynman diagrams, one direct scattering
and the other representing electron-positron pair annihilation into a pho-
ton and subsequent pair creation. These two modes are indistinguishable
and should be taken into account in the calculation.

The fifth and sixth terms NE and NF can be clubbed together. Each
term consists of contraction of one Fermion pair and one photon-pair,
yielding one Fermion propagator and one photon propagator. The elec-
tron emits a photon which is recaptured by the same electron. This is
known as the self-energy of the electron and is represented by the Feynman
diagram 12.4(a). This process converts the bare electron into a physical
electron. The self-interaction energy changes the mass of the bare elec-
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tron into that of the physical electron. Its evaluation leads to a divergent
integral which is overcome by the method of renormalization.

(a) (b) (c)

Figure 12.4: Feynman diagrams representing (a) Self energy of the electron
(b) Self energy of the photon or Vacuum polarization and (c) Vacuum diagram.

The seventh term NG consists of two Fermion pair contractions and
two uncontracted photon field operators. The photon creates a virtual
electron-positron pair which again annihilates into a photon. This is
known as the self-energy of the photon and is depicted by the Feynman
diagram (b) in Fig. 12.4. This is also known as vacuum polarization
since the external electromagnetic field such as that of heavy nucleus can
modify the distribution of virtual electron-positron pairs in the vacuum.
The calculation of the photon self-energy also leads to infinities which are
again eliminated by renormalization procedure.

The last term NH is one in which the two Fermion-pairs and one
photon-pair are contracted leaving no external line. This is a vacuum
diagram as illustrated in Fig. 12.4(c). Such vacuum diagrams without
any external line can be omitted.

Review Questions

12.1 Develop an invariant perturbation theory treating the interaction between
fields as a small perturbation and deduce the S-matrix formalism for the
study of scattering phenomena.

12.2 Define Normal Products, Dyson’s Chronological products, Wick’s chrono-
logical products and Wick’s contraction. State Wick’s theorem and explain
how it is useful in reducing Wick’s chronological product into normal prod-
ucts.
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12.3 Consider the first order term in the S-matrix expansion for the interaction
of the Dirac field with an external electromagnetic field and explain how
you can represent the various processes by means of Feynman diagrams.
Deduce the Feynman matrix element in momentum representation for the
positron scattering by an external electromagnetic field.

12.4 Explain how the S-matrix can be decomposed into normal products using
Wick’s theorem. Illustrate your answer by considering the second order
term in the S-matrix for the electro-magnetic interaction.

Problems

12.1 Given Eq. (12.3)

(H0 +Hi)Φ(t) = i~
∂Φ(t)

∂t
,

where H0 and Hi are the unperturbed and interaction Hamiltonian and
Φ(t) is the time-dependent state vector in the Schrödinger picture, deduce
Eq. (12.5)

i~
∂Ψ(t)

∂t
= HI(t)Ψ(t),

in the interaction picture where the state vector Ψ(t) and the interaction
Hamiltonian HI(t) are defined by

Ψ(t) = eiH0t/~Φ(t) and HI(t) = eiH0t/~Hie
−iH0t/~.

10.2 Given the Dirac spinors and the gamma matrices, construct a scalar, a
pseudoscalar, a four-vector, a pseudo vector, and an antisymmetric tensor
of second rank. With the help of these, construct an interaction Hamilto-
nian for electron-photon interaction and nucleon-pion interaction.

12.3 It is known that parity is not conserved in weak interaction. So, construct
an interaction Hamiltonian for the parity-violating β-decay.

Solutions to Problems

12.1 Since Ψ(t) = eiH0t/~Φ(t) and i~∂Φ(t)
∂t = (H0 + Hi)Φ(t), we get by differ-

entiating Ψ,

∂Ψ

∂t
=

i

~
H0e

iH0t/~Φ(t) + eiH0t/~ ∂Φ

∂t

=
i

~
H0e

iH0t/~Φ(t) + eiH0t/~ 1

i~
(H0 +Hi)Φ(t)

=
1

i~
eiH0t/~HiΦ(t)

=
1

i~
eiH0t/~Hie

−iH0t/~Ψ(t).
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Hence it follows that

i~
∂Ψ

∂t
= HI(t)Ψ(t),

where HI(t) = eiH0t/~Hie
−iH0t/~.

12.2 Given the Dirac spinors and γ matrices, we can construct the following
quantities which have definite transformation property:

Quantity Transformation Property No. of components

ψ̄ψ Scalar 1
ψ̄γ5ψ Pseudoscalar 1
ψ̄γµψ Four-vector 4
iψ̄γµγ5ψ Pseudo-vector 4

i
2 ψ̄(γµγν γνγµ)ψ Antisymmetric tensor 6

(2nd rank)

The factor i is included in order to take care of the Hermitian property.

Since the photon field is represented by a four-vector Aµ, the electron-
photon interaction is represented by the interaction Hamiltonian

Hint = ψ̄γµψAµ,

which is a scalar under Lorentz transformation.

The pion-nucleon interaction is a bit complicated. Since pion has an intrin-
sic negative parity when compared to the nucleon, the interaction Hamil-
tonian will have a form

ψ̄Nγ5ψNφ,

where φ represents the pseudo-scalar pion field. This interaction Hamilto-
nian is a scalar under both Lorentz transformation and parity operation.
Since the pion exists in three charge states, it can be represented by an
isospin vector τπ. Since the nucleon exists in two charge states, it can
be represented by a vector τN in isospin space. The interaction Hamilto-
nian has to be a scalar in the iso-spin space too. This yield an interaction
Hamiltonian

ψ̄Nγ5τN · τπψNφπ,

where ψN is a two-component vector and φπ is a three-component vector
in the isospin space.

ψN =

[
ψp
ψn

]
; φπ =

 φ1

φ2

φ3

 .
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12.3 It is known that the beta decay interaction is a combination of vector and
axial vector interaction.

Hint = Gβ
∑
i=V,A

Ci(ψ̄pOiψn)(ψ̄eOiψν),

where Gβ is the weak interaction coupling constant and CV and CA are
the coupling coefficients for vector and axial vector interaction. The op-
erators OV = γµ and OA = γµγ5 This is a parity conserving interaction.
Subsequently Lee and Yang postulated that weak interaction need not be
conserved in weak interaction and it has been experimentally confirmed by
Wu et al. It is found that CA = −CV for pure leptonic weak interaction
such as µ-decay. Incorporating this in V −A interaction, we get

Hint =
Gβ√

2
CV [ψ̄pγ

µ(1− γ5)ψn][ψ̄eγµ(1− γ5)ψν ].

The inclusion of the parity non-conserving extra term requires the inser-
tion of a factor 1/

√
2 in order to retain the old definition of the coupling

constant Gβ .



Chapter 13

The Gauge Theories

The Lagrangian density L of a field should be invariant under a phase
transformation of the field variable. This is often referred to as the invari-
ance of the Lagrangian density under gauge transformation. If the phase
transformation is independent of the space-time coordinates, then it is
known as the global phase transformation. The invariance of L under
global phase transformation implies certain symmetry property and leads
to the conservation of current. This in turn, leads to the law of conserva-
tion of charge or conservation of lepton number or baryon number.

If the phase transformation depends on the space-time coordinates
(x), then it is called the local phase transformation or the local gauge
transformation. In order to make L invariant under local gauge trans-
formation, certain additional vector fields known as gauge fields have to
be introduced. The gauge fields specify the interaction dynamics among
the fields. Thus gauge theories are of special interest since they govern
the interaction dynamics. The U(1) gauge invariance leads to the electro-
magnetic interaction, the SU(2) × U(1) gauge invariance leads to the
electro-weak interaction and SU(3) gauge invariance leads to the strong
interaction. The U(1), SU(2)×U(1) and SU(3) are the symmetry groups
that specify the gauge transformation.

One may ask why the Lagrangian density L should be invariant under
gauge transformation. It is an important criterion that is to be fulfilled
for developing a renormalizable field theory. That is why gauge theories
are of paramount importance in the formulation of quantum field theory.

289
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13.1 Invariance of Lagrangian under gauge trans-
formation

Noether’s theorem

Consider the Dirac Lagrangian density of a fermion field

L = ψ̄(x)(iγµ∂µ −m)ψ(x). (13.1)

In quantum field theory, the Lagrangian density should be Hermitian. So,
let us use the equivalent Dirac Lagrangian density which is Hermitian.

L =
i

2

(
ψ̄γµ∂µψ − (∂µψ̄)γµψ

)
−mψ̄ψ. (13.2)

It can be easily checked that the Lagrangian L is invariant under the
phase transformation

ψ(x)→ eiαψ(x), (13.3)

where α is a real constant. It follows that

∂µψ → eiα∂µψ. (13.4)

ψ̄ → e−iαψ̄. (13.5)

The phase transformation U(α) = eiα, with a single parameter α running
over all real numbers, forms a unitary Abelian group U(1). It is called
Abelian since the group multiplication is commutative.

U(α1)U(α2) = U(α2)U(α1).

The invariance of L under unitary transformation U(1) implies a
symmetry property and according to Noether’s theorem, any symmetry
property implies a conservation law. To observe this, let us consider the
invariance of L under an infinitesimal U(1) transformation.

ψ → (1 + iα)ψ; ψ̄ → (1− iα)ψ̄. (13.6)

Accordingly, we have

δψ = iαψ; δ(∂µψ) = iα(∂µψ). (13.7)

δψ̄ = −iαψ̄; δ(∂µψ̄) = −iα(∂µψ̄). (13.8)
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Invariance of L implies that

δL =
∂L

∂ψ
δψ +

∂L

∂(∂µψ)
δ(∂µψ) + δψ̄

∂L

∂ψ̄
+ δ(∂µψ̄)

∂L

∂(∂µψ̄)
= 0.(13.9)

(1) (2) (3) (4)

In the Lagrangian (13.2), the mass term will not contribute anything to
δL . So, we need to consider only the first two terms in (13.2). The terms
(1) and (2) in Eq. (13.9) yield

(1) + (2) =
∂L

∂ψ
(iαψ) +

∂L

∂(∂µψ)
(iα∂µψ)

= iα

{
∂L

∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)}
ψ + iα∂µ

(
∂L

∂(∂µψ)
ψ

)
= iα∂µ

(
∂L

∂(∂µψ)
ψ

)
, (13.10)

since the quantity within the curly bracket is zero due to the Euler-
Lagrange relation.

In a similar way, we can evaluate the terms (3) and (4) in Eq. (13.9)

(3) + (4) = (−iαψ̄)
∂L

∂ψ̄
− iα(∂µψ̄)

∂L

∂(∂µψ̄)

= −iαψ̄
{
∂L

∂ψ̄
− ∂µ

(
∂L

∂(∂µψ̄)

)}
− iα∂µ

(
ψ̄

∂L

∂(∂µψ̄)

)
= −iα∂µ

(
ψ̄

∂L

∂(∂µψ̄)

)
, (13.11)

since the quantity within the curly bracket is zero due to the Euler-
Lagrange relation.

Substituting (13.10) and (13.11) into Eq. (13.9), we get

δL = iα∂µ

[
∂L

∂(∂µψ)
ψ − ψ̄ ∂L

∂(∂µψ̄)

]
= ∂µ(−αψ̄γµψ) = 0. (13.12)

The Lagrangian (13.2) is used to obtain Eq. (13.12). It represents the
conserved current ∂µj

µ = 0 with

jµ = −αψ̄γµψ. (13.13)
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Thus the invariance of the Dirac Lagrangian under the global phase trans-
formation leads to the conservation of current jµ as per Noether’s theorem.

Let us consider the zeroth component j0 of the four-vector current jµ.
It yields the law of conservation of charge.

Q =

∫
d3x j0 = −α

∫
d3xψ̄γ0ψ = −α

∫
d3xψ†ψ

= −α
∫
d3p

∑
r

(
c†r(p)cr(p)− d†r(p)dr(p)

)
, (13.14)

where cr, c
†
r, dr and d†r are the annihilation and creation operators of the

Fermions and anti-Fermions. If α is the charge e, then it represents the
conservation of charge. Eqs. (13.13) and (13.14) are exactly the same
as Eqs. (10.32) and (10.33). The concept of conserved charge can be
extended to include the conservation of lepton number or baryon number,
since Eq. (13.14) refers to any property that depends on the number of
Fermions minus the number of anti-Fermions.

13.2 Gauge theory of electromagnetic interac-
tion

Let us investigate what happens if we impose the global phase rotation
symmetry to be also a local symmetry. In this case, α is a function of
space-time coordinates xµ. From Eq. (13.3), it follows

∂µψ
′ = ∂µ(eiα(x)ψ(x))

= (∂µe
iα)ψ + eiα∂µψ

= i(∂µα)eiαψ + eiα∂µψ. (13.15)

For Fermions,

L ψ′ = ψ̄′(i∂/−m)ψ′

= −ψ̄(∂µα)γµψ + ψ̄(i∂/−m)ψ

= −(∂µα)ψ̄γµψ + L ψ. (13.16)

Equation (13.16) clearly indicates that the Dirac Lagrangian is not invari-
ant under local phase rotation. This failure can be rectified by introduc-
ing new fields such that the modified Lagrangian has the local symmetry.
The extra term on the right-hand side of Eq. (13.16) involves a factor ∂µα
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which transforms like a four-vector. Introducing an additional term with
a four-vector field Aµ in the Dirac Lagrangian, a modified Lagrangian

L = ψ̄(i∂/−m)ψ + eψ̄γµψAµ, (13.17)

can be obtained which has a local symmetry under the transformation

ψ → ψ′ = eiα(x)ψ, Aµ → A′µ. (13.18)

What should be the transformation property of Aµ such that the modified
Lagrangian is invariant under local phase transformation? The modified
Lagrangian L ′

L ′ = ψ̄′(i∂/−m)ψ′ + eψ̄′γµψ′A′µ

= ψ̄(i∂/−m)ψ + e

(
A′µ −

1

e
∂µα

)
ψ̄γµψ, (13.19)

is invariant if the newly introduced four-vector field Aµ transforms as

A′µ = Aµ +
1

e
∂µα. (13.20)

Now one can easily identify that the newly introduced field Aµ is none
other than the electromagnetic field which leaves the Lagrangian of the
free electromagnetic field invariant under the same local transformation.
Adding the free field Lagrangian of the electromagnetic field1, we obtain
the full Lagrangian for the combined field of ψ and Aµ.

L = ψ̄(i∂/−m)ψ − 1

4
FµνF

µν + eψ̄γµψAµ. (13.21)

This is the Lagrangian that is used in field theory for the study of Quan-
tum Electrodynamics (QED). It may be observed that the full Lagrangian
(13.21) consists of an interaction term

L int = eψ̄γµψAµ,

besides the free-field Lagrangians of Dirac and e.m. fields. Since the origin
of the interaction term can be traced to the introduction of a new field to
make the Dirac Lagrangian invariant under a local gauge transformation,
the newly introduced field has come to be known as gauge field, its field
quantum as gauge Boson and the underlying theory as gauge theory.

1Since the electromagnetic field strength tensor Fµν

Fµν = ∂µAν − ∂νAµ

is gauge invariant, the total Lagrangian L remains gauge invariant.
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Gauge covariant derivative

Let us define a gauge covariant derivative2 Dµ.

Dµ = ∂µ − ieAµ, (13.22)

such that the complete Lagrangian for QED (Eq. (13.21)) can be written
in the form

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν . (13.23)

The same technique can be used for any other field with global sym-
metry. Let us illustrate it for the charged scalar field φ. Any complex
scalar field φ which has a global phase symmetry for the transformation

φ→ eiαφ

will also acquire a local phase symmetry with the substitution

∂µ → Dµ; Aµ → Aµ +
1

e
∂µα.

Thus we can obtain the Lagrangian for the scalar field interacting with
the electromagnetic field as

L = (Dµφ)†(Dµφ)−m2φ†φ− 1

4
FµνF

µν . (13.24)

13.3 Spontaneous symmetry breaking

The Lagrangian density of any field has a certain symmetry. Under certain
conditions, the ground state of the system loses this symmetry. Besides
the ground state of the system may not be unique but may consist of
many degenerate states. One is free to choose any one of the degener-
ate states as the ground state and express the Lagrangian in terms of
new fields which have zero expectation values at the ground state. The
new Lagrangian, so obtained, does not possess the same symmetry of the
original Lagrangian but physics-wise they are one and the same. This is

2The gauge covariant derivative of ψ, Dµ transforms in the same way as ψ.

ψ(x)→ eiα(x)ψ(x); Dµψ(x)→ eiα(x)Dµψ(x).
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known as the spontaneous symmetry breaking3. Let us illustrate it with
physical examples choosing (a) real scalar field and (b) complex scalar
field.

13.3.1 Real scalar field

Consider the Lagrangian of the real scalar field.

L = T − V =
1

2
(∂µφ)2 −

(
1

2
µ2φ2 +

1

4
λφ4

)
. (13.25)

The Lagrangian is invariant under the symmetry transformation φ →
−φ. If both λ and µ2 are positive, then the ground state of the system
corresponds to φ = 0 and the Lagrangian curve will exhibit a reflection
symmetry about φ = 0, as shown in Fig. 13.1(a). If λ is negative, the
Lagrangian will go on decreasing with increase of φ and will not have any
minimum value. If λ is positive and µ2 is negative, then the Lagrangian
will show a minimum at two values of φ (φ = ±v) as shown in Fig. 13.1(b)
and they correspond to the ground states of the system.

V (φ)

φ
0

(a)

V (φ)

φ
0

−v v

(b)

Figure 13.1: The shape of V (φ) for a scalar field with λ > 0 and (a) µ2 > 0
and (b) µ2 < 0.

V =
1

2
µ2φ2 +

1

4
λφ4.

dV

dφ
= φ(µ2 + λφ2) = 0, (13.26)

3For a good account on this subject, the reader is referred to: F. Halzen and A. D.
Martin, Quarks and Leptons, John Wiley (1984).
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which yields

φ = ±
√
−µ2/λ = ±v; µ2 = −λv2. (13.27)

In quantum field theory, all perturbation calculations are done with re-
spect to the ground state, φ = v or φ = −v. Let us choose the ground
state to correspond to φ = v. There is no loss of generality since the
ground state φ = −v can always be reached by reflection symmetry.

φ(x) = v + η(x), (13.28)

where η(x) is the new field with which all perturbation calculations are
done. Let us rewrite the Lagrangian (13.25) in terms of the new field
η(x).

L =
1

2
(∂µη(x))2 − 1

2
µ2(v + η(x))2 − 1

4
λ(v + η(x))4

=
1

2
(∂µη(x))2 +

1

2
λv2(v + η(x))2 − 1

4
λ(v + η(x))4

=
1

2
(∂µη(x))2 + (v + η(x))2

{
1

2
λv2 − 1

4
λ(v + η(x))2

}
. (13.29)

The quantity within the curly bracket can be simplified to yield

{· · · } =
1

4
λ
(
v2 − η(x)2 − 2vη(x)

)
.

Substituting this and rearranging, we get

L =
1

2
(∂µη(x))2 − λv2η(x)2 − λvη(x)3 − 1

4
λη(x)4 +

1

4
λv4. (13.30)

The last term 1
4λv

4 is just a constant. The first term is the kinetic energy
term for the η field. The second term is the mass term for the scalar
field η, which can be inferred by a reference to Eq. (13.25).

mη =
√

2λv2 =
√
−2µ2. (13.31)

The higher order terms in η represent the self interaction of the η field.
The Lagrangian L in φ given by Eq. (13.25) has the reflection symme-

try whereas the Lagrangian L in η has no such reflection symmetry. This
is known as the spontaneous symmetry breaking. Both the Lagrangians
(13.25) and (13.30) are equivalent and they will yield the same physics
but the Lagrangian (13.30) which corresponds to the ground state of the
system does not possess the symmetry of the Lagrangian (13.25).
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13.3.2 Complex scalar field

The Goldstone theorem

Let us now consider the effect of spontaneous symmetry breaking in the
case of a complex scalar field φ = (φ1 + iφ2)/

√
2, where φ1 and φ2 are two

real fields. The Lagrangian for the complex scalar field can be written as

L = (∂µφ)∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2. (13.32)

This Lagrangian is invariant under U(1) global gauge transformation.

φ→ eiαφ.

As before, we shall consider the interesting case of λ > 0 and µ2 < 0. The
potential

V (φ) = µ2φ∗φ+ λ(φ∗φ)2 (13.33)

is minimum at the value of φ for which

dV

dφ
= µ2φ∗ + 2λφ∗(φ∗φ) = 0 or |φ|2 = −µ

2

2λ
=
v2

2
. (13.34)

This corresponds to the vacuum expectation value

〈φ〉 =
v√
2

=

√
−µ

2

2λ
. (13.35)

Only the magnitude is obtained but its phase is arbitrary. There are
many ground states located on a circle of radius v with the same energy
as shown in Fig. 13.2(b) and the system can be in anyone of the ground
states.

We can now expand the complex scalar field φ(x) in terms of two real
fields η(x) and ε(x) which have zero expectation values at the ground
state.

φ(x) =

√
1

2
[v + η(x) + iε(x)]. (13.36)

This yields

φ∗φ =
1

2
{(v + η)2 + ε2}. (13.37)

V = µ2(φ∗φ) + λ(φ∗φ)2, with µ2 = −v2λ

=
λ

4

{
(v + η)2 + ε2

}{
−2v2 + (v + η)2 + ε2

}
=

λ

4

{
(η2 + ε2 + 2vη)2 − v4

}
. (13.38)
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V (φ)

φ1

φ2

(a)

η

ε

V (φ)

(b)

Figure 13.2: The shape of V (φ) for a complex scalar field with λ > 0 and
(a) µ2 > 0 and (b) µ2 < 0.

Substituting (13.38) in the Lagrangian density (13.32) and expressing it
in terms of the new quantum fields η and ε, we get

L =
1

2
(∂µη)(∂µη) +

1

2
(∂µε)(∂µε)− λv2η2 − λvη(η2 + ε2)

−λ
4

(η2 + ε2)2 +
λv4

4
. (13.39)

The first two terms are the kinetic energy terms, the third term is the
mass term for the η(x) field with mass

√
2λv2, the fourth and fifth terms

are the cubic and quartic terms in η and ε and the last term is a constant
term which has no physical significance.

We have started with a massive complex scalar field and by sponta-
neous symmetry breaking, we have obtained a massive scalar field and
a massless scalar field with interaction terms. The massive scalar field
is known as the gauge boson with mass and the massless scalar field is
known as the Goldstone boson. The present study is a simple example
of the Goldstone theorem which states that massless scalar bosons appear
whenever a continuous symmetry of a physical system is spontaneously
broken.

13.4 The Higgs mechanism

We have seen earlier that the invariance of the Lagrangian under local
phase transformation dictates the interaction dynamics and necessitates
the introduction of a gauge field. This gauge field is massless and so
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the U(1) gauge transformation describes well the e.m. interaction and
one can identify the newly introduced gauge field as the photon. But, in
the case of weak interaction, the gauge fields are the intermediate vector
Bosons which are massive. In the Lagrangian, the introduction of any
term involving the mass of the gauge field will violate the local phase
transformation and the theory will become non-renormalizable. So, in
order to preserve the local phase transformation symmetry of the original
Lagrangian and, at the same time, endow the gauge field with mass, the
concept of spontaneous symmetry breaking is used and this method is
known as the Higgs mechanism.

The mechanism of mass generation by spontaneous symmetry break-
ing was proposed in 1964 by three different groups - Englert and Brout4,
Peter W. Higgs5 and Guralink, Hagen and Kibble6 - almost simultane-
ously but working independently. More often, this mechanism is referred
to as the Higgs mechanism after one of the discoverers.

13.4.1 Interaction of charged scalar field with e.m. field

Let us consider the QED Lagrangian for a charged scalar particle of mass
µ, which is invariant under a U(1) local gauge transformation.

φ→ eiα(x)φ.

To obtain such a Lagrangian, the derivative ∂µ has to be replaced by the
covariant derivative Dµ

∂µ → Dµ = ∂µ − ieAµ,

and the gauge field Aµ transforms as

Aµ → Aµ +
1

e
∂µα.

By this procedure, we obtain the gauge-invariant QED Lagrangian for a
charged scalar particle.

L = (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ− V − 1

4
FµνF

µν , (13.40)

4F. Englert and R. Brout, Phys.Rev. Lett. 13, 321-323 (1964).
5Peter W. Higgs, Phys. Rev. Lett. 13, 508-509 (1964).
6G.S. Guralink, C.R. Hagen and T.W.B. Kibbs, Phys. Rev. Lett. 13, 585-587

(1964).
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with
V = µ2φ∗φ+ λ(φ∗φ)2.

The Lagrangian (13.40) corresponds to a scalar field φ of mass µ and a
gauge field Aµ which is massless. By treating µ2 and λ as parameters and
taking µ2 < 0 and λ > 0, we will be able to generate a mass for the gauge
boson Aµ by the method of spontaneous symmetry breaking. This way
of generating a mass for gauge boson is known as the Higgs mechanism.

Minimizing the potential

V = µ2φ∗φ+ λ(φ∗φ)2,
dV

dφ
= µ2φ∗ + 2λ(φ∗φ)φ∗ = 0,

we get

|φ|2 = −µ
2

2λ
=
v2

2
, v =

√
−µ

2

λ
.

Expanding the complex scalar field φ in terms of the real fields η and ε
that correspond to the ground state of the system

φ(x) =

√
1

2
{v + η(x) + iε(x)},

we can rewrite the Lagrangian L in terms of the new fields η(x) and ε(x).
The first term in the Lagrangian (13.40) yields

1

2
(∂µη)(∂µη) +

1

2
(∂µε)(∂µε) + e2AµAµφ

∗φ.

Using the expressions (13.37) and (13.38), deduced earlier for φ∗φ and V ,
we rewrite the Lagrangian (13.40) in terms of the new fields η and ε.

L ′ =
1

2
(∂µη)(∂µη) +

1

2
(∂µε)(∂µε) +

1

2
e2v2AµAµ

−v2λη2 − evAµ∂µε−
1

4
FµνF

µν + interaction terms. (13.41)

The Lagrangian L ′ exhibits a particle spectrum which consists of a mas-
sive gauge vector boson Aµ, a massive scalar η, a massless Goldstone
boson ε. From an inspection of the Lagrangian (13.41), we can write
down the masses of the particles.

mA = ev, mη =
√

2λv2, mε = 0.

In this way, we have dynamically generated a mass for the gauge boson
Aµ but along with it, we have also a massless Goldstone boson ε. The
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Lagrangians L and L ′ are equivalent and the number of degrees of free-
dom cannot change by this transformation. In L , we have a complex
scalar field with mass which accounts for two degrees of freedom and a
massless gauge boson Aµ with two degrees of freedom corresponding to
transverse polarizations. Thus, in total, we have four degrees of freedom
in the Lagrangian L . On the other hand, in L ′, the gauge boson Aµ has
acquired a mass and so it can have longitudinal polarization in addition
to two transverse polarizations. There are also two scalar particles, one
with mass (η) and another without mass (ε) (known as Goldstone boson).
Thus, we have, in total, five degrees of freedom in the Lagrangian L ′. The
Goldstone boson, which is spurious, has to be eliminated. The presence of
off-diagonal term evAµ∂

µε in L ′ requires some attention. Is it possible to
eliminate the field ε by choosing some particular gauge transformation?
Yes, it is, by choosing a slightly modified gauge transformation.

The unitary gauge

We get a clue from the expansion of the field φ in terms of the fields η
and ε which define the ground state.

φ =

√
1

2
(v + η + iε).

This is the lowest order in ε but instead of this, we shall include higher
orders in ε and write

φ =

√
1

2
(v + η)eiε/v.

This suggests that we should substitute a different set of real fields h, θ, Aµ.

φ −→ φ′ =

√
1

2
(v + h(x))eiθ(x)/v; (13.42)

Aµ −→ A′µ = Aµ +
1

ev
∂µθ (13.43)

This is a particular choice of gauge, known as the unitary gauge, that
makes the Lagrangian independent of the field θ.

L ′′ = (∂µ + ieA′
µ
)φ′
∗
(∂µ − ieA′µ)φ′ − V − 1

4
FµνF

µν , (13.44)

where

V = µ2φ′
∗
φ′ + λ(φ′

∗
φ′)2, with µ2 = −v2λ

=
λ

4

(
h4 + 4vh3 + 4v2h2 − v4

)
. (13.45)
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The first term in (13.44) yields

(∂µ + ieA′
µ
)φ′
∗
(∂µ − ieA′µ)φ′

=
1

2
∂µh ∂µh+

1

2
e2v2AµAµ +

1

2
e2h2AµAµ + e2vhAµAµ.(13.46)

Substituting (13.45) and (13.46) into the Lagrangian (13.44) and rear-
ranging, we get

L ′′ =
1

2
(∂µh)2 − λv2h2 − 1

2
e2v2A2

µ − λvh3 − 1

4
λh4

+
1

2
e2h2A2

µ + ve2hA2
µ +

1

4
λv4 − 1

4
FµνFµν . (13.47)

We have successfully eliminated the Goldstone boson which is spurious.
The Lagrangian (13.47) just describes two interacting massive particles,
the massive gauge vector boson Aµ and a massive scalar boson h which
is called the Higgs boson.

mA = ev, mh =
√

2λv2.

The unwanted massless Goldstone boson has been used up to provide the
longitudinal polarization for the massive gauss vector boson Aµ. Since
the above study offers a method of producing massive gauge vector boson
by eliminating the spurious Goldstone boson, this method is also known
as the Higgs mechanism.

13.4.2 The SU(2) gauge symmetry

Hitherto, we have considered the U(1) gauge symmetry of the Lagrangian
and its spontaneous symmetry breaking. The U(1) gauge group is abelian
and so it is much simpler to deal with. Here, we shall consider the SU(2)
gauge symmetry which is a bit more complicated than the U(1) gauge
group because the SU(2) gauge group is non-abelian. Non-abelian gauge
theories are often referred to as Yang-Mills theories, named after the per-
sons who have first discovered their structure.

The generators of the SU(2) group are the Pauli spin matrices τ1, τ2, τ3

which do not commute.

τ1 =

[
0 1
1 0

]
, τ2 =

[
0 −i
i 0

]
τ3 =

[
1 0
0 −1

]
. (13.48)

[τi, τj ]− = 2iεijkτk. (13.49)
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In Eq. (13.49), εijk denotes an antisymmetric tensor. εijk = 1, if i, j, k
are in cyclic order; otherwise εijk = −1.

Let us consider a Lagrangian

L = (∂µφ)†(∂µφ)− µ2φ†φ− λ(φ†φ)2, (13.50)

where φ is an SU(2) doublet of complex scalar fields.

φ =

[
φα
φβ

]
=

√
1

2

[
φ1 + iφ2

φ3 + iφ4

]
. (13.51)

It can be easily checked that the Lagrangian L is invariant under global
SU(2) phase transformation.

φ→ φ′ = eiαaτa/2φ. (13.52)

To make it invariant under local gauge transformation with α(x), we need
to replace the derivative ∂µ with covariant derivative

Dµ = ∂µ +
1

2
igτaW

a
µ , (13.53)

invoking three gauge vector fields W a
µ with a = 1, 2, 3. The strength of the

SU(2) coupling to the Gauge fields is denoted by g. Under an infinitesimal
gauge transformation

φ(x)→ φ′(x) = (1 + iα(x) · τ/2)φ(x), (13.54)

the three gauge fields transform as (vide Solved Problems)

W µ →W µ −
1

g
∂µα−α×W µ. (13.55)

The extra term α ×W µ in Eq. (13.55) occurs because W µ is a SU(2)
vector. With these inputs, we can write the gauge invariant Lagrangian
L as

L =

(
∂µφ+

1

2
igτ ·W µφ

)†(
∂µφ+

1

2
igτ ·W µφ

)
−V (φ)− 1

4
W µν ·W µν , (13.56)

with

V (φ) = µ2φ†φ+ λ(φ†φ)2; (13.57)

W µν = ∂µW ν − ∂νW µ − gW µ ×W ν . (13.58)
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The extra terms in Eqs. (13.55) and (13.58) arise due to the non-abelian
character of the SU(2) group since τa, a = 1, 2, 3 do not commute with
each other. If µ2 > 0 and λ > 0, then the Lagrangian (13.56) describes
a system of four scalar particles, each of mass µ, interacting with three
massless vector bosons.

What we are interested in, is the special case of µ2 < 0 and λ > 0,
when a spontaneous symmetry breaking occurs. Out of the four scalar
particles, three of them are absorbed by the three gauge vector bosons to
gain mass and the remaining one becomes the Higgs boson. This method
of adding mass to the Gauge bosons is known as the Higgs mechanism.

The potential V (φ) has its minimum when

φ†φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) = −µ

2

2λ
. (13.59)

There are a large number of points at which V (φ) is minimum and one is
free to choose anyone of them. Let us choose the point

φ1 = φ2 = φ4 = 0, φ2
3 = −µ

2

λ
= v2 (13.60)

as the minimum and expand φ(x) about this point. This is what is known
as the spontaneous symmetry breaking of the SU(2) symmetry. The sym-
metry which is explicit in (13.59) is broken in (13.60). Substituting (13.60)
in Eq. (13.51), we get the vacuum state φ0.

φ0 =

√
1

2

[
0
v

]
.

One can expand φ(x) about this vacuum state, postulating a Higgs field
h(x).

φ(x) =

√
1

2

[
0

v + h(x)

]
. (13.61)

By substituting (13.61) for φ(x) in the Lagrangian (13.56), we find that
the Lagrangian now depends on only one field, called the Higgs field. It is
really surprising. We initially started with four scalar fields φ1, φ2, φ3, φ4

but ended up with only one field h. Let us consider the small SU(2)
fluctuations about the vacuum in terms of the real fields θ1, θ2, θ3 and h.

φ(x) = eiτ ·θ(x)/v

[
0

v+h(x)√
2

]
. (13.62)
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For small perturbations,

eiτ ·θ(x)/v = 1 +
i

v
(τ1θ1 + τ2θ2 + τ3θ3)

=

[
1 + iθ3/v (θ2 + iθ1)/v
−(θ2 − iθ1)/v 1− iθ3/v

]
. (13.63)

Substituting (13.63) in (13.62), we get

φ(x) ≈
√

1

2

[
θ2 + iθ1

v + h− iθ3

]
, (13.64)

where we have retained only the first order terms, neglecting the second-
order terms. Thus, we find that φ(x) indeed consists of four independent
fields and parametrize the fluctuations from the vacuum. Since the La-
grangian is locally SU(2) invariant, we can gauge away the three mass-
less Goldstone bosons θ1(x), θ2(x), θ3(x), giving mass to the three gauge
bosons W .

The last term in the Lagrangian (13.56) represents the kinetic energy
of the gauge bosons. Let us substitute φ(x) given by Eq. (13.61) in
the remaining terms of the Lagrangian (13.56) and consider the relevant
non-vanishing parts.

(∂µφ)†(∂µφ) =
1

2
(∂µh)†(∂µh). (13.65)∣∣∣∣12 igτ ·W µφ

∣∣∣∣2 =
g2

8

∣∣∣∣[ W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ W 3
µ

] [
0

v + h

]∣∣∣∣2
=

g2

8

[
|W 1

µ |2 + |W 2
µ |2 + |W 3

µ |2
]

(v + h)2. (13.66)

φ†φ =
1

2
(v + h)2. (13.67)

V (φ) = φ†φ
{
µ2 + λ(φ†φ)

}
=

1

2
(v + h)2

{
−v2λ+

λ

2
(v + h)2

}
=

λ

4

{
(h2 + 2vh)2 − v4

}
. (13.68)

Equation (13.65) represents the kinetic energy of the Higgs boson. In Eq.
(13.66), we have used the short-hand notation | |2 to denote ( )†( ) and
it yields the mass of the gauge bosons W a

µ besides their interaction with
the Higgs field. From the term

(g2v2/8)[|W 1
µ |2 + |W 2

µ |2 + |W 3
µ |2],
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one can infer that all the three gauge bosons have identical masses M =
1
2gv since the typical mass term is of the form 1

2M
2W 2

µ . From Eq. (13.68),

we also infer that the mass of the Higgs boson is m =
√

2λv2 from the
typical term 1

2m
2h2 = λv2h2.

M =
1

2
gv, m =

√
2λv2.

Thus, we find that the Lagrangian (13.56) describes three gauge bosons,
each with mass 1

2gv and a massive Higgs boson with mass
√

2λv2. By
using the unitary gauge, the three massless Goldstone bosons that were
created by spontaneous symmetry breaking were swallowed by the three
gauge bosons in order to gain mass. The scalar degrees of freedom have
been used to provide the longitudinal polarization of the massive gauge
bosons. This is an illustrative example of the Higgs mechanism.

13.5 Electroweak Interactions

Having learnt how a Lagrangian, which is invariant under global phase
transformation, can be made invariant under local phase transformation
by introducing vector gauge bosons and having studied the concepts of
spontaneous symmetry breaking and the Higgs mechanism, we are now
in a position to discuss the gauge theory of electroweak interaction.

Since the neutrino is left-handed, it is coupled with the left-handed
electron to form a weak isospin doublet. The right-handed electron is
considered as an isospin singlet. In this scheme, the Dirac Lagrangian
of the electron-neutrino pair is invariant under global SU(2)×U(1) gauge
transformation, only if the mass term of the electron is excluded from the
Lagrangian. In order to make the Lagrangian invariant under the local
SU(2)×U(1) gauge transformation, we need to introduce four vector gauge
bosons W 1,W 2,W 3 and B and by introducing scalar fields (Higgs fields)
and invoking the Higgs mechanism, these vector gauge bosons are made to
acquire masses. A suitable linear combinations of these gauge bosons yield
the three massive vector bosons W+,W− and Z0, associated with weak
interaction and the massless photon A, associated with electromagnetic
interaction. The same Higgs doublet of scalar fields is used to generate
lepton masses by spontaneous symmetry breaking but a slightly modified
Higgs doublet of scalar fields is used to generate quark masses. This is
the gauge theory of electroweak interaction that has been developed by
Abdus Salam and Weinberg.
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13.5.1 Weak isospin and weak hypercharge

Just as the strongly interacting particles (hadrons) are grouped together
in an elegant way in the Gellmann-Nishijima scheme by defining isospin
and hypercharge quantum numbers, the weakly interacting particles are
also grouped together in an analogous way by defining weak isospin T and
weak hypercharge Y quantum numbers as shown in Table 13.1 such that
the charge of the particle is given by

Q = T3 +
Y

2
. (13.69)

There are three generations of leptons and quarks.(
νe
e−

)
,

(
u
d

)
;

(
νµ
µ−

)
,

(
c
s

)
;

(
ντ
τ−

)
,

(
t
b

)
.

In Table 13.1, the weak isospin T and weak hypercharge Y quantum
numbers are given only for the firat generation of leptons and quarks.
Similar quantum numbers are given for the second and third generations
of leptons and quarks.

Table 13.1: Weak isospin and weak hypercharge quantum numbers of the
first generation of leptons and quarks

Lepton T T3 Q Y Quark T T3 Q Y

νe
1
2

1
2 0 −1 uL

1
2

1
2

2
3

1
3

e−L
1
2 −1

2 −1 −1 dL
1
2 −1

2 −1
3

1
3

uR 0 0 2
3

4
3

e−R 0 0 −1 −2 dR 0 0 −1
3 −2

3

It is an experimental observation that the neutrino is left-handed and
this supports the attribute of zero mass to the neutrino7. Since the elec-
tron has a finite mass, it can have both right-handed and left-handed
components. In other words, electron can exist in both chiral states or

7Although the standard model of elementary particles assumes zero mass for the
neutrinos, there is a strong evidence that the neutrinos should have a small mass due
to the discovery of neutrino oscillations.
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with positive and negative helicities. As can be observed from the Table
13.1, the electron neutrino and the left chiral electron are paired together
to form a doublet with weak iso-spin T = 1

2 and weak hypercharge Y = −1
but different iso-spin projections T3 = + 1

2 and T3 = − 1
2 . The right chi-

ral electron is a singlet with weak iso-spin T = 0 and weak hypercharge
Y = −2.

ψL =

[
νe
e−L

]
with T = 1

2 , Y = −1; (13.70)

ψR = e−R with T = 0, Y = −2. (13.71)

They are subjected to gauge transformation SU(2)×U(1) as shown below:

ψL −→ ψ′L = eiα·T+iβ(Y/2)ψL; (13.72)

ψR −→ ψ′R = eiβ(Y/2)ψR. (13.73)

For global phase invariance, the quantities α and β will be independent
of space time coordinates and for local phase invariance, α(x) and β(x)
will be dependent on the space-time coordinates x.

It can be easily checked that the mass term for the electron is not
gauge invariant since the left-handed electron eL is a member of weak
isospin doublet and the right-handed electron eR is a weak isospin singlet.
(For convenience of notation, the fields are sometimes represented by the
particle symbol itself.)

mee = m(eL + eR)(eL + eR)

= m(eLeL + eLeR + eReL + eReR). (13.74)

The cross terms are not manifestly gauge invariant and so the mass term
for the fermions cannot be included in the Lagrangian, if it is to be gauge
invariant.

13.5.2 Lagrangian for the fermions

In the doublet structure proposed for the leptons, the mass term is not
gauge invariant. So, omitting the mass term, the Dirac Lagrangian for
the electron-neutrino pair can be written as

L = ψLγ
µ(i∂µ)ψL + eRγ

µ(i∂µ)eR,
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which is invariant under global gauge transformation. In order to make
it invariant under local gauge transformation, we need to introduce four
vector gauge bosons W1,W2,W3 and B in order to make the derivative
∂µ to correspond to a covariant derivative Dµ.

(i∂µ)L → (iDµ)L = (i∂µ)L − gT ·W − g′ 12Y Bµ,with Y = −1;(13.75)

(i∂µ)R → (iDµ)R = (i∂µ)R − g′ 12Y Bµ, with Y = −2.(13.76)

Thus, we obtain the SU(2) × U(1) local gauge invariant Lagrangian
of the electron-neutrino pair, by substituting T = 1

2τ and the respective
Y values.

L 1 = ψLγ
µ
(
i∂µ − 1

2gτ ·W + 1
2g
′Bµ
)
ψL + eRγ

µ
(
i∂µ + g′Bµ

)
eR

−1

4
W µν ·W µν − 1

4
BµνB

µν . (13.77)

The last two terms in Eq. (13.77) represent the kinetic energies and self-
coupling of the W µ fields and the kinetic energy of the Bµ field.

W µν = ∂µW ν − ∂νW µ − gW µ ×W ν ; (13.78)

Bµν = ∂µBν − ∂νBµ. (13.79)

Note that the Lagrangian L 1 corresponds to massless fermions and mass-
less gauge bosons. The mass terms such as

mee,
1

2
M2
WW

µW µ,
1

2
M2
BB

µBµ

are not gauge invariant and inclusion of these in the Lagrangian L 1 will
spoil the guage invariance of the Lagrangian. So, to generate the masses in
a gauge invariant way, we invoke the Higgs mechanism by spontaneously
breaking the gauge symmetry. This has the great virtue of preserving
the gauge invariance of the original Lagrangian, which is considered so
essential for retaining the theory as fully renormalizable.

13.5.3 The Higgs field

To activate the Higgs mechanism for generating masses for the gauge
bosons, we have to invoke the scalar fields φi (the Higgs fields) and con-
sider their SU(2)× U(1) gauge-invariant Lagrangian L 2.

L 2 =

∣∣∣∣(i∂µ − gT ·W µ − g′
Y

2
Bµ

)
φ

∣∣∣∣2 − V (φ), (13.80)
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with
V (φ) = µ2φ†φ+ λ(φ†φ)2.

In Eq. (13.80), g and g′ denote the weak coupling constants, coupling the
gauge bosons with the Higgs fields and | |2 = ( )†( ).

It is known that the electro-weak interaction is generated by three
massive gauge bosons W+,W− and Z0 besides the massless photon. Let
us bear this in mind, while choosing the scalar fields.

In order to maintain the gauge invariance of L 2, one should choose
the scalar fields φi in such a way that they form a SU(2)×U(1) multiplet
(an isospin doublet with weak hypercharge Y = 1)

φ =

[
φα
φβ

]
(13.81)

with

φα =
1√
2

(φ1 + iφ2) ; φβ =
1√
2

(φ3 + iφ4) . (13.82)

This is the choice made originally by Weinberg in 1967 and it is popularly
known as the Weinberg-Salam model.

Let us minimize the Higgs potential V (φ) by choosing µ2 < 0 and
λ > 0 and obtain the condition

φ†φ =
1

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
= −µ

2

2λ
. (13.83)

There are many sets of values of φi at which V (φ) is minimum and one
is free to choose anyone of them. Let us choose the configuration

φ1 = φ2 = φ4 = 0, φ2
3 = −µ

2

λ
= v2, (13.84)

for the minimum of V (φ) and identify it as the ground state with the
vacuum expectation value φ0.

φ0 =
1√
2

[
0
v

]
. (13.85)

The choice of this vacuum φ0 spontaneously breaks the SU(2) × U(1)Y
symmetry of the Lagrangian L 2 and thereby the gauge bosons acquire
masses. But there is a subgroup of gauge transformations whose symme-
try is not broken by the vacuum φ0 and so the gauge boson associated
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with this subgroup will remain massless. The choice of the vacuum φ0

with T = 1
2 , T3 = − 1

2 and Y = 1 preserves the electromagnetic U(1)em

symmetry with the generator

Q = T3 +
Y

2
, (13.86)

such that

Qφ0 = 0. (13.87)

Consequently,

φ0 → φ′0 = eiα(x)Qφ0 = φ0. (13.88)

The gauge invariance of the vacuum under U(1)em transformation assures
that the photon which is the gauge boson of electromagnetic interaction
is massless.

The four gauge bosons W 1,W 2,W 3 and B acquire masses due to the
spontaneous symmetry breaking of the SU(2)×U(1)Y symmetry. The two
vector bosons W 1 and W 2 combine to yield the two charged intermediate
vector bosons W+ and W−.

W+ =
1√
2

(W 1 + iW 2); W− =
1√
2

(W 1 − iW 2). (13.89)

On the other hand, the two neutral gauge bosons W 3 and B combine to
yield the neutral intermediate vector boson Z0 and the photon A.

Aµ = cos θWBµ + sin θWW
3
µ ; (13.90)

Z0
µ = − sin θWBµ + cos θWW

3
µ ; (13.91)

where θW is known as the Weinberg angle or the weak mixing angle. In
other words, the eigenstates Aµ and Z0

µ are obtained from the eigenstates
Bµ and W 3

µ by a unitary transformation which corresponds to a rotation
in the Hilbert space through an angle θW .

Let us now consider how the gauge bosons acquire masses by sponta-
neous symmetry breaking by the vacuum state φ0. For this consider the
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relevant terms in the Lagrangian L 2 (with Y = 1).∣∣∣∣(−g1

2
τ ·W µ − g′

Y

2
Bµ

)
φ0

∣∣∣∣2
=

1

8

∣∣∣∣[ gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′Bµ

] [
0
v

]∣∣∣∣2
=

1

8
v2
{
g2|W 1

µ − iW 2
µ |2 + | − gW 3

µ + g′Bµ|2
}

=
1

8
v2
{
g2
(
2W+

µ W
−µ)+

(
g2W3µW

3µ − 2gg′W 3
µB

µ + g′2BµB
µ
)}
,

(13.92)

where

W± =
1√
2

(W 1 ± iW 2).

The first term represents the mass term for the charged bosons, M2
WW

+W−

with

MW =
1

2
vg. (13.93)

The other term is off-diagonal in the W
(3)
µ and Bµ basis and can be written

as
1

8
v2
{
g2W3µW

3µ − 2gg′W 3
µB

µ + g′2BµB
µ
}

=
1

8
v2
{
|gW 3

µ − g′Bµ|2 + 0|g′W 3
µ + gBµ|2

}
. (13.94)

Eq. (13.94) suggests that instead of two neutral fields W
(3)
µ and Bµ, we

can take a linear combination of them to correspond to two orthogonal
fields, one to represent the neutral intermediate vector boson Z0

µ and the
other to represent the photon Aµ, with masses Mz and MA and identify
Eq. (13.94) with

1

2
M2
Z(Z0

µ)2 +
1

2
M2
AA

2
µ,

where the factor 1
2 is the appropriate factor for the mass terms of neutral

vector bosons Z0
µ and Aµ.

The normalized fields Z0
µ anf Aµ are

Z0
µ =

gW
(3)
µ − g′Bµ√
g2 + g′2

with MZ =
1

2
v

√
g2 + g′2; (13.95)

Aµ =
g′W

(3)
µ + gBµ√
g2 + g′2

with MA = 0. (13.96)
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It is conventional to relate the electromagnetic coupling constant e to the
weak coupling constants g and g′ by defining a mixing angle θW known
as the Weinberg angle.

e = g sin θW = g′ cos θW (13.97)

In terms of the mixing angle θW , Eqs. (13.95) and (13.96) can be written
as [

Z0
µ

Aµ

]
=

[
cos θW − sin θW
sin θW cos θW

][
W

(3)
µ

Bµ

]
. (13.98)

From Eq. (13.97), it follows that

g′

g
= tan θW . (13.99)

From Eqs. (13.93) and (13.95), we obtain the ratio of the massesMW /MZ .

MW

MZ
=

1√
1 + (g′2/g2)

=
1√

1 + tan2 θW
= cos θW . (13.100)

In summary, it can be said that the photon mass MA = 0 is an input but
the ratio of the masses MW /MZ is a definite prediction of the Weinberg-
Salam model.

13.5.4 Lepton masses

It may be recalled that in the original Lagrangian L 1, we have not in-
cluded the mass term mψψ for the lepton since it is not invariant un-
der SU(2) × U(1) gauge transformation. But it is found that the same
Higgs doublet which is used to generate masses for the intermediate vector
bosons can also be used to generate the masses for the leptons by sponta-
neous symmetry breaking. For this purpose, let us include the following
SU(2)× U(1) guage invariant Lagrangian L 3.

L 3 = −Ge
{

[νe, e]L

[
φα
φβ

]
eR + eR[φα, φβ]

[
νe
e

]
L

}
. (13.101)

The Higgs doublet has exactly the quantum numbers required to make
the terms eLeR and eReL, gauge invariant. By spontaneous symmetry
breaking, we obtain

φ0 =
1√
2

[
0
v

]
; φ(x) =

1√
2

[
0

v + h(x)

]
. (13.102)
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After spontaneous symmetry breaking, we are left with only one Higgs
field h(x) in φ(x), after gauging away the other fields. Substituting φ(x)
into the Lagrangian L 3 (13.101), we obtain

L 3 = −Ge√
2
{v + h(x)} (eLeR + eReL). (13.103)

We may choose the coupling constant Ge such that

me =
Gev√

2
. (13.104)

Thus, we have generated the electron mass me using the Lagrangian L 3,
by spontaneous symmetry breaking.

L 3 = −meee−
me

v
eeh. (13.105)

Since the coupling constant Ge is not known, the mass me of the electron
is not predicted. We have only shown that by spontaneous symmetry
breaking, the electron can acquire a finite mass. The second term in Eq.
(13.105) represents the interaction term of the electron with Higgs scalar.
Since v ≈ 246 GeV, me/v is negligibly small that this term will have no
noticeable effect on the electro-weak interaction.

13.5.5 Quark masses

Just as we have generated the lepton masses, we can also generate the
quark masses. But there is a difference. In the case of lepton doublet ( )L,
the upper member, neutrino, has no right-handed component but only the
lower member, electron, has, in addition, the right-handed component.
Whereas, in the case of quark doublet ( )L, both the upper and lower
members have right-handed components. This necessitates the use of two
different Higgs doublets Φ and Φc = iτ2Φ∗ in the Lagrangian L 4. The
latter Higgs doublet Φc is used to generate the right-handed component
for the upper member of the quark doublet.

Φ =

[
φα
φβ

]
. (13.106)

Φc = iτ2Φ∗ =

[
0 1
−1 0

] [
φ∗α
φ∗β

]
=

[
φ∗β
−φ∗α

]
. (13.107)

The Higgs doublet Φc has opposite hypercharge (Y = −1) when compared
to Φ with hyperchage Y = 1, due to the special properties of SU(2). So,



13. The Gauge Theories 315

it is used to generate a gauge invariant Lagrangian L 4 for the quarks
doublet.

L 4 = −Gd
[
u, d

]
L

[
φα
φβ

]
dR −Gu

[
u, d

]
L

[
φ∗β
−φ∗α

]
uR

+hermitian conjugate. (13.108)

By spontaneous symmetry breaking (ssb), Φ(x) and Φc(x) become

Φ(x) =

[
φα
φβ

]
ssb−→

√
1

2

[
0

v + h(x)

]
; (13.109)

Φc(x) =

[
φ∗β
−φ∗α

]
ssb−→

√
1

2

[
v + h(x)

0

]
. (13.110)

Substituting (13.109) and (13.110) into Eq. (13.108) and simplifying, we
get

L 4 = −mddd

(
1 +

h

v

)
−muuu

(
1 +

h

v

)
, (13.111)

where md = Gdv√
2

and mu = Guv√
2

represent the masses of the d and u

quarks. The quark masses depend upon the unknown coupling constants
Gd and Gu and so they have to be treated as parameters of the theory
rather than as prediction.

13.6 Strong interactions

Quarks as building blocks of hadrons

Strongly interacting particles such as protons, neutrons, hyperons, pi-
ons and kaons are known as hadrons and are found to be composite ob-
jects consisting of quarks. Quarks are spin- 1

2 particles carrying fractional
charge and they come in six flavours. They are up, down, strange, charm,
bottom and top quarks and they are presented in Table 13.2 with their
quantum numbers, charges and masses.

There is a one-to-one correspondence between leptons and quarks and
they are usually classified into three generations of leptons and quarks, as
shown in Table 13.3 given below. There are, in total, six leptons and six
flavours of quarks and the matter is built out of them.
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Table 13.2: List of quarks, their flavours and their quantum numbers. Charge
Q/e = I3+ 1

2 (B+s+c+b+t), where B denotes the baryon number, s the
strangeness quantum number, c charm quantum number, b bottom or beauty
quantum number and t the top or truth quantum number.

Flavour B I I3 s c b t Q/e Mass

up (u) 3
2

1
2 + 1

2 0 0 0 0 + 2
3 5.6± 1.1 MeV

down (d) 3
2

1
2 − 1

2 0 0 0 0 − 1
3 9.9± 1.1 MeV

strange (s) 3
2 0 0 −1 0 0 0 − 1

3 199± 3.3 MeV

charm (c) 3
2 0 0 0 1 0 0 + 2

3 1.35± 0.05 GeV

bottom (b) 3
2 0 0 0 0 −1 0 − 1

3 ∼ 5 GeV

top (t) 3
2 0 0 0 0 0 1 + 2

3 ∼ 174± 17 GeV

Table 13.3: Three generations of leptons and quarks

Leptons Quarks

νe νµ ντ u c t

e− µ− τ− d s b

Colour degree of freedom

Soon after the proposal that quarks are the fundamental constituents
of hadrons, an intense search was made to tract them down, but every
attempt ended in a failure. Just as the negative result of the Michelson-
Morley experiment has revolutionized the fundamental concept of physics
with regard to the absolute motion and gave birth to Einstein’s theory of
relativity, the failure to observe the quarks in free state resulted in a new
attribute of colour degree of freedom to the quarks and gave birth to the
theory of quantum chromodynamics as the fundamental theory of strong
interaction.
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13.6.1 Quantum chromodynamics

The quarks are coloured objects and each quark carries three colours, say,
red, green and blue and all the particles in the real world are colour-
less objects with a combination of these colours. It is not possible to
observe the coloured quarks in free state but they certainly do exist in
the bound states within a colourless particle which we observe. The ev-
idence for the additional colour degree for quarks has come from many
sources. The quarks interact through the exchange of gluons. The gluons
carry colour charges and they are the vector bosons that are exchanged
between coloured quarks. This is a distinguishing feature and permits
gluon-gluon interaction; whereas photons which are exchanged between
charged particles do not carry any charge.

Just as the charged particles interact through the exchange of pho-
tons and the quantum electrodynamics (QED) is developed as the local
gauge invariance of the Lagrangian of the charged particles, the quantum
chromodynamics (QCD) is also developed as the local gauge invariance of
the Lagrangian of free quarks with colour degree of freedom. The appro-
priate gauge group is SU(3) which is non-abelian. The non-abelian gauge
theories are generally referred to as Yang-Mills theories.

Let us now consider the free Lagrangian of the quark colour fields

L 0 = q̄i(iγ
µ∂µ −m)qi, (13.112)

where q1, q2, q3 denote the three colour fields. For simplicity, let us con-
sider only one quark flavour. Let us consider the Lagrangian (13.112) to
be invariant under local phase transformation. Since there are three colour
fields, it is appropriate to consider the invariance under SU(3) group of
phase transformation.

q(x) = Uq(x) = eiαa(x)Taq(x), (13.113)

where U is a 3× 3 unitary matrix. Ta with a = 1, · · · 8 are a set of eight
independent Hermitian traceless 3×3 matrices with group parameters αa.
The matrices Ta obey the commutation relation

[Ta, Tb]− = ifabcTc, (13.114)

where fabc are real constants, known as the structure constants of the
group and they are antisymmetric under exchange of any pair of indices.
The natural choice of matrices Ta are Ta = λa/2, where λa denote the
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Gell-Mann matrices.

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,
λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,
λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (13.115)

The matrices λi are Hermitian traceless matrices and det(λi) =1. They
obey the commutation relations

[λa, λb]− = 2ifabcλc,

where fabc are structure constants given by

f123 = 1, f458 = f678 =

√
3

2
,

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
. (13.116)

They are antisymmetric under interchange of any pair of indices. The
structure constants with other indices are zero.

Let us consider infinitesimal phase transformations and find the condi-
tions under which the Lagrangian L is invariant under SU(3) local gauge
transformation.

q(x) → {1 + iαa(x)Ta} q(x), (13.117)

∂µq → {1 + iαaTa} ∂µq + iTaq∂µαa. (13.118)

The extra term in Eq. (13.118) spoils the gauge invariance of L and
let us proceed to restore the gauge invariance by introducing eight gauge
fields Gaµ, a = 1, · · · , 8, each transforming under gauge transformation as
shown below:

Gaµ → Gaµ −
1

g
∂µαa. (13.119)

This is the procedure, we adopted in QED and let us follow it here and
define a covariant derivative

Dµ = ∂µ + igTaG
a
µ, (13.120)
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and use it to replace ∂µ by Dµ in the Lagrangian L 0, given by Eq.
(13.112).

L = q̄(iγµDµ −m)q = q̄(iγµ∂µ −m)q − g(q̄γµTaq)G
a
µ. (13.121)

The Lagrangian (13.121) is analogous to the QED Lagrangian but it is not
gauge-invariant in the case of QCD due to the non-abelian nature of the
gauge transformation. Under infinitesimal SU(3) gauge transformation,

q̄γµTaq → q̄′γµTaq
′ = (1− iαbTb)q̄γµTaq(1 + iαbTb)

= q̄γµTaq + iαbq̄γ
µ[Ta, Tb]−q

= q̄γµTaq − fabcαb(q̄γµTcq). (13.122)

The result (13.122) is obtained using the commutation relation (13.114)
and it suggests that the Lagrangian (13.121) can be made invariant by
modifying the gauge transformation property (13.119) of the gauge boson.

Gaµ → Gaµ −
1

g
∂µαa − fabcαbGcµ. (13.123)

By adding the kinetic energy term for each of the gauge fields Gaµ to
the Lagrangian (13.121), we obtain the total gauge invariant QCD La-
grangian.

L = q̄(iγµ∂µ −m)q − g(q̄γµTaq)G
a
µ −

1

4
GaµνG

µν
a . (13.124)

The additional term involves Gaµν which has a more complicated structure
than its counterpart in QED.

Gaµν = ∂µG
a
ν − ∂νGaµ − gfabcGbµGcν . (13.125)

The QCD Lagrangian (13.124) gives the interaction between the coloured
quarks with the vector bosons (gluons) and also between the vector bosons
themselves. The vector bosons are massless just as photons but they carry
colour charges unlike photons.

The Lagrangian (13.124) involves the following terms

q̄q, q̄qG, G2, G3 and G4,

indicating the propagation of quark, interaction of quark with gluon, gluon
propagation, three gluon vertex and four gluon vertex, which can be rep-
resented diagrammatically as shown in Fig. 13.3 below:

Diagrams (d) and (e) represent the cubic and quartic interactions be-
tween gluons because gluons carry colour charges. Such interactions are
absent in the case of e.m. interactions because photons do not carry
electric charges.
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Figure 13.3: Diagrammatic representation of the various terms in the QCD
Lagrangian (13.124).

13.7 Summary

Let us now summarize the results of our study. The requirement of in-
variance of Lagrangian under a local gauge transformation leads to the
study of fundamental interactions of particles. Take for example, the La-
grangian for a free electron. The requirement that the Lagrangian should
be locally invariant under the same type of transformation can only be
fulfilled by introducing additional fields, known as gauge fields. In a sense,
the electromagnetic field is a consequence of the local gauge symmetry of
the Lagrangian for the electron.

This procedure can be extended to the study of more complex gauge
transformations to unravel other types of interactions such as weak in-
teractions and strong interactions. The weak interactions are mediated
by intermediate vector bosons which are massive but the gauge-invariant
Lagrangian does not allow mass term for the gauge bosons. This difficulty
is overcome by introducing the concept of spontaneous symmetry break-
ing and the usage of Higgs mechanism. The choice of negative value for
µ2 in the potential term of the Lagrangian shifts the ground state from
the origin to a finite value of φ. Thus the phase (gauge) symmetry of
the Lagrangian is not shared by the ground state (vacuum state). This
phenomenon is known as spontaneous symmetry breaking.

The breaking of the phase (gauge) symmetry by the ground state en-
ables the gauge boson to acquire mass. At the same time, the fact that this
symmetry is retained by the Lagrangian enables the renormalization to go
through. This last feature is found to be very important because it ensures
a systematic cancellation of infinities, without which there will not be any
predictable field theory. The renormalizability of electro-weak gauge the-
ory in the presence of spontaneous symmetry breaking was shown to be
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valid by t’Hooft8 for which he was awarded the Nobel Prize in 1999.

Thus, the gauge principle provides a general scheme for introducing
interaction by constructing gauge field theories. To this end one starts
with a Lagrangian for a matter field and derives the interaction by intro-
ducing exactly those fields that make the Lagrangian invariant under a
relevant local gauge transformation. It seems that all fundamental forces
can be described by such local gauge field theories. Gauge symmetry plays
a crucial role in determining the dynamics of the theory since the nature
of gauge transformation determines the possible interaction. The struc-
ture of these transformations are characterized by special mathematical
groups: U(1) for QED, SU(2)×U(1) for electroweak interaction, SU(3)
for strong interaction. The relations between these groups are exploited
in programs for the unification of the fundamental types of interaction.
From a more technical point of view, gauge symmetries are important
tools in proofs of renormalizability. So, it turns out that gauge invariance
plays as much an important role as Lorentz invariance in the selection of
theories. Since gauge invariance plays a pivotal role in the discovery of
quantum field theories, it is a paradigm case for how a rich mathematical
structure can help in the construction of theories.

The gauge theories invoke the scalar fields, known as the Higgs fields,
and are based on the concepts of spontaneous symmetry breaking and
the Higgs mechanism for generating masses for the gauge bosons, leptons
and quarks. The outcome of these theories is the additional production
of Higgs boson of mass mh =

√
2λv2, which can be considered as the

quantum excitation of of one of the four components of Higgs field. Hence
its discovery is considered to be very important for verifying the validity
of gauge theories. That is why the CERN undertook the arduous task
of constructing the most expensive and complex experimental facility,
the Large Hadron Collider (LHC) and inviting international collaboration
for conducting the experiments with LHC; which finally resulted in the
discovery of Higgs boson with a mass of about 126 GeV. The discovery of
Higgs boson was confirmed by CERN on March 14, 2013, following which
Peter Higgs and Francois Englert were jointly awarded the Nobel Prize in
Physics for the year 2013.

8t Hooft, G. (1971). ”Renormalization of massless Yang-Mills fields”. Nuclear
Physics B 33, 173-177 (1971); ”Renormalizable Lagrangians for massive Yang-Mills
fields”. Nuclear Physics B 35 167-448 (1971).
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Review Questions

13.1 (a) State and explain Noether’s theorem
(b) Show that the global gauge invariance of Dirac’s Lagrangian leads to
conservation of current.

13.2 Show that the Dirac Lagrangian density is invariant under global phase
transformation but not under local phase transformation. In order to make
it invariant under local phase transformation, one has to introduce a gauge
field Aµ which represents the e.m. field.

13.3 Write down the Lagrangian for a real scalar field φ(x) and show that it
has reflection symmetry. Explain the concept of spontaneous symmetry
breaking by introducing a new field η(x), in terms of which the Lagrangian
has lost the reflection symmetry. Find the mass of the new scalar field η(x).

13.4 Write down the Lagrangian of a complex scalar field φ(x) which is invari-
ant under global U(1) gauge transformation. By spontaneous symmetry
breaking, show that one can obtain a massive scalar field known as gauge
boson and a massless scalar field known as Goldstone boson.

13.5 Consider the Lagrangian of a charged scalar field of mass µ, which is
invariant under a U(1) local gauge transformation. Show that, by sponta-
neous symmetry breaking, the gauge boson acquires a mass and a massless
Goldstone boson is also generated. Show how, by using the unitary gauge,
the massless Goldstone boson is eliminated.

13.6 Discuss Higg’s mechanism of giving mass to the gauge boson by absorbing
the massless Goldstone boson.

13.7 Consider the Lagrangian of a SU(2) doublet complex scalar field which is
invariant under global SU(2) phase transformation. Discuss how you can
make it invariant under local gauge transformation by introducing three
vector gauge fields and how, by invoking Higg’s mechanism, you can make
them acquire masses.

13.8 Discuss the SU(2)×U(1) group of gauge theory of electro-weak interac-
tions as developed by Weinberg and Salam and explain how the inter-
mediate vector bosons that mediate the weak interactions acquire masses
whereas the photon that mediates the e.m. interaction remains massless.

13.9 Explain why in electro-weak theory, the mass terms of the leptons in
the Lagrangian have to be omitted to make it gauge-invariant and how
by invoking Higgs fields, the lepton masses can be generated by Higgs
mechanism.

13.10 Discuss why in electro-weak theory, the quarks have to be massless for
the Lagrangian to be gauge-invariant and how the quarks can be made to
acquire masses by spontaneous symmetry breaking.
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13.11 Discuss briefly how the quantum chromodynamics can be treated as the
theory of strong interactions.

13.12 Discuss the SU(3) gauge theory of QCD and obtain the appropriate La-
grangian density which is gauge-invariant. Obtain expressions for the
gauge field and also for the free field Lagrangian of the gauge boson.

13.13 Discuss how the gauge theory is considered as the standard model of
elementary particles and how does the discovery of Higgs boson vindicate
the gauge theory of elementary particles.

Problems

13.1 Consider the following Lagrangian density of a complex scalar field:

L = (∂µφ)∗(∂µφ)−m2φ∗φ.

Show that the U(1) phase invariance of the Lagrangian implies the exis-
tence of a conserved current.

jµ = −ie (φ∗∂µφ− φ∂µφ∗) .

13.2 Show that U(α) = eiαiτi/2, where αi represents a real number and τi the
Pauli matrices, is a unitary matrix. Write down explicitly the operator
U(α) as a 2 × 2 unitary matrix. Show that det(U(α)) = 1 and hence
U(α) represents a SU(2) transformation.

13.3 Show that the Lagrangian of a SU(2) doublet complex scalar field φ is
invariant under an infinitesimal local gauge transformation with α(x),

φ→ φ′ = eiαaτa/2φ,

if the derivative ∂µ is replaced by the covariant derivative

Dµ = ∂µ +
1

2
igτaW

a
µ ,

by invoking three gauge vector fields W a
µ with a = 1, 2, 3, which transform

as

W µ →W ′
µ = W µ −

1

g
∂µα−α×W µ.

The strength of the SU(2) coupling to the gauge field is denoted by g and
τa with a = 1, 2, 3 denote the three iso-spin Pauli matrices.

13.4 Consider the rotation of a vector A through an infinitesimal angle α in
a three-dimensional space and show that the rotated vector A′ can be
expressed as A′ = A−α×A such that the scalar product A′ ·A′ = A ·A
is invariant under rotation.
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13.5 Show that under SU(2) non-abelian gauge transformation, the quantity

Wµν = ∂µW ν − ∂νW µ

does not transform as an iso-vector but the quantity

W µν =Wµν − g(W µ ×W ν)

transforms as an iso-vector.

13.6 Show that the free Lagrangian density of the produced gauge fields

L g = −1

4
W a

µνW
µν
a , (a = 1, 2, 3)

is invariant under SU(2) non-abelian gauge transformation.

13.7 From Fermi’s theory of muon decay, the Fermi coupling constant GF is
found to be

GF = 1.166× 10−5 Gev−2.

Comparing Fermi’s theory with Weinberg-Salam Model, we obtain a rela-
tion

GF√
2

=
g2

8M2
W

=
1

2v2
.

From the νµ − e scattering cross section

νµ + e− → νµ + e−,

one gets a value for the mixing angle (Weinberg angle) θW .

sin2 θW = 0.225.

Given the fine structure constant e2

4π = 1
137 , find the values of v, the

fundamental coupling constants g and g′ and the masses of the gauge
bosons MW and MZ .

Solutions to Problems

13.1 Under U(1) phase invariance,

φ(x)→ eiαφ(x); φ∗(x)→ e−iαφ∗(x).

Under infinitesimal U(1) phase invariance,

φ(x)→ (1 + iα)φ(x); φ∗(x)→ (1− iα)φ∗(x).

Thus, we get

δφ(x) = iαφ(x); δφ∗(x) = −iαφ∗(x).

δ(∂µφ(x)) = iα(∂µφ(x)); δ(∂µφ
∗(x)) = −iα(∂µφ

∗(x)).
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Invariance of L implies δL = 0 under the U(1) phase transformation.
Following the method given in Sec. 13.1 to get Eq. (13.12), we obtain

δL = iα∂µ

[
∂L

∂(∂µφ)
φ− φ∗ ∂L

∂(∂µφ∗)

]
= 0.

Using the given Lagrangian,

L = (∂µφ)∗(∂µφ)−m2φ∗φ,

we obtain

δL = iα∂µ [(∂µφ)∗φ− φ∗(∂µφ)] = ∂µj
µ = 0.

By replacing α by e, we obtain the conserved current.

jµ = −ie(φ∗∂µφ− φ(∂µφ)∗).

13.2 First let us show that U(α) is a unitary matrix. U(α)† = U(α)−1.

Since αi is real and τi is a Pauli matrix which is Hermitian (τ †i = τi), we
obtain

U(α)† = e−iαiτ
†
i /2 = e−iαiτi/2 = U(α)−1.

Let us now show explicitly that Ux is a 2× 2 matrix.

Ux = eiαxτx/2

= 1 + i
αx
2
τx −

{(αx/2)τx}2

2!
− i{(αx/2)τx}3

3!
+
{(αx/2)τx}4

4!
+ · · ·

= 1 + i(αx/2)τx −
(αx/2)2

2!
− i (αx/2)3

3!
τx +

(αx/2)4

4!
+ · · ·

=

(
1− (αx/2)

2!
+

(αx/2)4

4!
− · · ·

)
+ iτx

(
αx/2−

(αx/2)3

3!
+ · · ·

)
= cos

αx
2

+ iτx sin
αx
2

=

[
cos αx2 i sin αx

2

i sin αx
2 cos αx2

]
.

Above, we have used the property that τ2
x = 1. It can be easily seen that

detUx = 1. By the same procedure, we can obtain the other components
Uy and Uz. Since U = UxUyUz and detU = detUx detUy detUz, we
obtain detU = 1. So, U(α) is a unitary 2× 2 matrix with detU = 1. So,
it represents a SU(2) unitary transformation.

13.3 Under infinitesimal gauge transformation,

ψ → ψ′ = e(i/2)τ ·α(x)ψ =

(
1 +

i

2
τ ·α

)
ψ.
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The covariant derivative transforms in the same way as the field ψ.

Dψ → (Dψ)′ =

(
1 +

i

2
τ ·α

)(
∂µ +

ig

2
τ ·W

)
ψ. (13.126)

Under infinitesimal gauge transformation, if the gauge field W transforms
as

W →W ′ = W + δW ,

then

Dψ → D′ψ′ =

{
∂µ +

ig

2
τ · (W + δW )

}(
1 +

i

2
τ ·α

)
ψ. (13.127)

Equating the right hand sides of Eqs. (13.127) and (13.126) and retaining
only the first order terms, we get

i

2
∂µ(τ ·α)ψ +

ig

2
τ · (W + δW )ψ − g

4
(τ ·W )(τ ·α)ψ

=
ig

2
τ ·Wψ − g

4
(τ ·α)(τ ·W )ψ.

The above equation simplifies to

(τ · δW )ψ = −1

g
∂µ(τ ·α)ψ +

i

2
{(τ ·α)(τ ·W )− (τ ·W )(τ ·α)}ψ

= −1

g
∂µ(τ ·α)ψ +

i

2
[τ ·α, τ ·W ]− ψ. (13.128)

Let us now evaluate the commutator [τ ·α, τ ·W ]−, using the familiar
relation involving Pauli matrices.

(σ ·A)(σ ·B) = A ·B + iσ · (A×B).

It follows that

(τ ·α)(τ ·W ) = α ·W + iτ · (α×W );

(τ ·W )(τ ·α) = W ·α+ iτ · (W ×α)

= α ·W − iτ · (α×W ).

Substituting the value of the commutator

[τ ·α, τ ·W ]− = 2iτ · (α×W ) (13.129)

in Eq. (13.128), we obtain

(τ · δW )ψ = −1

g
∂µ(τ ·α)ψ − τ · (α×W )ψ.

This yields the transformation formula for the gauge fieldW µ under SU(2)
gauge transformation.

W µ →W ′
µ = W µ + δW µ = W µ −

1

g
∂µα−α×W µ.
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Alternative Method

Under infinitesimal gauge transformation U = 1 + (i/2)τ · α, the field ψ
and its covariant derivative Dψ transform as given below:

ψ → ψ′ = Uψ; Dψ → D′ψ′ = UDU†Uψ.

Under infinitesimal gauge transformation, the covariant derivative Dψ =
∂µ + (ig/2)τ ·W becomes (retaining only the first order terms in α since
we are considering an infinitesimal transformation)

D′ = UDU† =

(
1 +

i

2
τ ·α

)(
∂µ +

ig

2
τ ·W

)(
1− i

2
τ ·α

)
=

(
1 +

i

2
τ ·α

)(
∂µ +

ig

2
τ ·W

)
− i

2
{τ · (∂µα) + (τ ·α)∂µ}

+
g

4
(τ ·W )(τ ·α)

= ∂µ +
ig

2
τ ·W − i

2
τ · (∂µα)− g

4
[(τ ·α), (τ ·W )]− . (13.130)

Substituting the value of the commutator given by Eq. (13.129), we get

D′ = ∂µ +
ig

2
τ ·
{
W − 1

g
∂µα−α×W

}
= ∂µ +

ig

2
τ ·W ′. (13.131)

Thus we obtain the transformation law for the gauge boson W .

W ′ = W − 1

g
∂µα−α×W .

13.4 Consider the rotation of a vector A in the x-y plane through an infinites-
imal angle αz about the z - axis, as shown in Fig. The rotated vector is
denoted by A′.

Ax = A cos θ, Ay = A sin θ, Az = 0.

A′x = A cos(θ − αz) = A(cos θ cosαz + sin θ sinαz) = A(cos θ + sin θαz)

= Ax +Ayαz.

A′y = A sin(θ − αz) = A(sin θ cosαz − cos θ sinαz) = A(sin θ − cos θαz)

= Ay −Axαz.
A′z = Az.
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·······················

Ay

Ax
x

y

z

αz

θ

A
A′

o

Figure 13.4: The rotation of vector A by an infinitesimal angle αz about
the z-axis. The rotated vector is A′.

In a similar way, we can consider infinitesimal rotations of the vector A
through an angle αx about the x - axis and an angle αy about the y - axis
and obtain the components of the rotated vector, A′.

A′x = Ax, A′y = Ay + αxAz, A′z = Az − αxAy.
A′x = Ax − αyAz, A′y = Ay, A′z = Az + αyAx.

Collecting the above results, we can express rotated vector in a compact
form:

A′ = A−α×A. (13.132)

Retaining only the first order terms in α, it can be easily seen that

A′ ·A′ = (A−α×A) · (A−α×A) = A ·A,

since (α×A) ·A = A · (α×A) = α · (A×A) = 0.

13.5 Under SU(2) gauge transformation,

Wµν →W ′µν = ∂µW
′
ν − ∂νW

′
µ

= ∂µ

(
W ν −

1

g
∂να−α×W ν

)
−∂ν

(
W µ −

1

g
∂µα−α×W µ

)
= ∂µW ν − ∂νW µ − ∂µ(α×W ν) + ∂ν(α×W µ)

= ∂µW ν − ∂νW µ −α× (∂µW ν − ∂νW µ)

−(∂µα×W ν − ∂να×W µ). (13.133)
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In Eq. (13.133), if the last term was absent, then the quantityWµν can be
regarded as a vector in iso-spin space as per the results of Prob. 13.4. So,
let us try to eliminate the last term by adding or subtracting an additional
term.

Let us consider the quantity g(W µ ×W ν). Under SU(2) gauge transfor-
mation, it transforms as

g(W µ ×W ν) → g(W ′
µ ×W

′
ν)

g(W ′
µ ×W

′
ν) = g

(
W µ −

1

g
∂µα−α×W µ

)
×
(
W ν −

1

g
∂να−α×W ν

)
= g((W µ ×W ν)−W µ × ∂να− ∂µα×W ν

−g {W µ × (α×W ν) + (α×W µ)×W ν} .(13.134)

Let us consider the vector identity

(A×B)×C + (B ×C)×A+ (C ×A)×B = 0,

which on rearrangement yields

(A×B)×C +B × (A×C) = A× (B ×C).

Using the above result, the curly bracket in the last term of Eq. (13.134)
becomes α× (W µ ×W ν). Substituting it in Eq. (13.134), we get

g(W ′
µ ×W

′
ν) = g(W µ ×W ν)− gα× (W µ ×W ν)

−W µ × ∂να− ∂µα×W ν . (13.135)

Using Eqs. (13.133) and (13.135), we get

W ′µν − g(W ′
µ ×W

′
ν) = Wµν − g(W µ ×W ν)

−α× {Wµν − g(W µ ×W ν)} . (13.136)

Thus we find that

W µν =Wµν − g(W µ ×W ν) = ∂µW ν − ∂νW µ − g(W µ ×W ν)

is an iso-vector and the SU(2) gauge transformation is equivalent to rotat-
ing the vector in the iso-spin space (vide Problem 13.4.)

13.6 For invariance of Lagrangian under local gauge transformation under
SU(2) group, three gauge vector fields W µ are introduced. The free La-
grangian density of the three gauge fields are

L g = −1

4
W a

µνW
µν
a , a = 1, 2, 3.
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We have shown in Solved Problem (13.5) that

W µν = ∂µW ν − ∂νW µ − g(W µ ×W ν)

is an iso-vector and the SU(2) local gauge transformation is equivalent to
a rotation of the vector in the iso-spin space. Hence the scalar product

W µν ·W µν =
∑
a

W a
µνW

µν
a ,

is invariant under SU(2) local gauge transformation. Consequently, L g is
invariant under local SU(2) gauge transformation.

13.7 From the given relation GF /
√

2 = 1/(2v2), we get

v2 =
1√

2GF
= 6.0644× 104

v = 246.26 GeV

Given the fine structure constant, e2/4π = 1/137, we get the value of the
coupling constant e.

e =

(
4π

137

)1/2

= 0.30286.

From Eq. (13.97), we get

g =
e

sin θW
=

0.30286√
0.225

= 0.6385.

g′ =
e

cos θW
=

e√
1− sin2 θW

= 0.34403.

From Eqs. (13.93) and (13.100), we get the masses of the gauge bosons
MW and MZ .

MW =
1

2
vg =

1

2
× 246.26× 0.6385 = 78.619 GeV.

MZ =
MW

cos θW
= 89.305 GeV.



Chapter 14

Recent Developments

The purpose of the present book is limited to the study of Relativis-
tic Quantum Mechanics and its extension to Feynman’s formulation of
Quantum Electrodynamics and highlight how Feynman’s formulation is
equivalent to the more general approach of Quantum Field Theory, the
elements of which have been discussed in some detail. But, it is found de-
sirable to give a bird’s eye view of the difficulties encountered in treating
higher order terms in the perturbation theory and the recent advances
in Quantum Field Theory. The divergent integrals that one meets in
the perturbation theory have been overcome by evolving renormalization
techniques. It is shown that Quantum Electrodynamics is a gauge the-
ory that is renormalizable. Recent advances in Quantum Field Theory
include the successful attempts to bring in its fold the weak interactions
and strong interactions. So, the Quantum Field Theory has emerged as
a fundamental theory of electromagnetic, weak and strong interactions,
leading to the formulation of the Standard Model of elementary particles.
It is being generally felt that the Quantum Field Theory is a low energy
limit of a more fundamental theory which includes gravitational interac-
tion. The String Theory and Superstring Theory appear to be promising
candidates for such a general theory of everything.

14.1 The Renormalization Program

As long as we are considering the QED processes in the lowest order of
perturbation expansion, we face no problems and we get results that tally

331
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fairly well with the experimental data. If we wish to improve the accu-
racy of our calculations and go to higher orders, we encounter divergent
integrals as explained in Chap. 7. The integral1

∫
d4k

(2π)4

1

k4

diverges logarithmically. Many have struggled with these infinities during
1940s. Eventually, they have found a way out by using different techniques
of regularization and renormalization. By renormalizing mass, charge and
wave functions, one can get rid of infinities in all orders of perturbation
theory. A field theory which gives finite answers for all observable phe-
nomena to all orders in perturbation theory by renormalization procedure
is said to be renormalizable. QED is indeed a renormalizable theory.

14.1.1 Regularization and Renormalization

In evaluating the integral
∫

d4k
(2π)4

, we simply integrate only upto Λ, known

as a cut off, to avoid the divergences. Then the integral is said to be
regularized. After regularization, we speak of cut-off dependent quantities
instead of divergent quantities.

But any physically observable quantity such as scattering cross section
should not depend upon Λ.

In the S-matrix formalism, when the interaction is switched off, we
deal with only bare particles without self-interaction i.e. with only bare
mass m0 and bare charge e0. But these bare particles are not observ-
able and all the observable attributes are experimentally observable mass
m and charge e. The difference between the bare mass m0 and experi-
mental mass m and similarly the difference between bare charge e0 and
the observable charge e depend upon the cut-off parameter Λ but the
physically observable quantities such as the scattering cross section de-
pend only upon quantities such as experimental mass and charge. This
is what we call renormalization. The physically observable quantities are
indeed independent of the cut-off parameter. There are two different ways
of achieving this. One is called the Pauli-Villars regularization and the
other is known as the dimensional regularization.

1The integral
∫∞

dr rn diverges linearly for n = 0, quadratically for n = 1 and so
on and

∫∞ dr
r

diverges logarithmically.
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14.2 The Standard Model

It has been established that there are four different types of forces that
operate in this universe: (1) Strong interaction (2) Electro-magnetic in-
teraction (3) Weak interaction and (4) Gravitational interaction. It is the
ultimate aim of the physicists to formulate a unified theory of all these
four forces into one integrated “theory of everything”.

Of the four interactions, electromagnetic interaction has been fairly
well understood and all the processes in Quantum Electrodynamics can
be explained to a high degree of accuracy on the basis of the theory devel-
oped by Tomonago, Schwinger and Feynman. The electro-magnetic inter-
action is mediated by photons (gauge Bosons) and in the field theoretic
parlance, it is a gauge theory with gauge group U(1). The weak interac-
tion is mediated by intermediate vector bosons W+,W−, Z0 and Sheldon
Glashow, Steven Weinberg and Abdus Salam developed a unified theory
of electromagnetic and weak interactions which has come to be known
as electro-weak theory which is a gauge theory of gauge group SU(2) ×
U(1). The electro-weak theory has been enlarged to include strong inter-
action which arises from exchange of gluons between the coloured quarks
that constitute the hadrons. The extended theory unifies the electro-
weak interactions with strong interactions and it is popularly known as
the standard model of particle physics. It is a gauge theory of the elec-
troweak and strong interactions with the gauge group SU(3) × SU(2) ×
U(1).

14.2.1 Basic elementary particles - Fermions

The Standard Model is built on the basis of 12 elementary particles of
spin 1/2 known as Fermions which obey the Pauli exclusion principle.
Each Fermion has a corresponding anti-particle. They are classified into
quarks and leptons, depending upon their interactions. There are six
quarks (up, down, strange, charm, bottom, top) and six leptons (electron,
electron neutrino, muon, muon neutrino, tau, tau neutrino). Pairs of these
particles from each group form a set, known as a generation, as shown in
Table. 14.1 There are three generations.

The quarks carry colour charge and they interact by exchange of glu-
ons which are also coloured objects. This results in the theory of colour
forces known as quantum chromodynamics (QCD) and it has been devel-
oped as the theory of strong interactions in analogy with QED. But the
fundamental difference is that photons do not carry electric charges in
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Table 14.1: Fermions that form the basis for the Standard Model.

Fermions Charge Generation I Generation II Generation III

Quarks + 2
3 Up u Charm c Top t

− 1
3 Down d Strange s Bottom b

Leptons −1 Electron e− Muon µ− Tau τ−

0 e-neutrino νe µ-neutrino νµ τ -neutrino ντ

QED but in QCD the gluons carry colour charges. QCD is a non-abelian
gauge field theory of strong interactions and it has two important features:

1. At short distances i.e. at high momentum transfers, the interaction
becomes weaker. This is known as the asymptotic freedom. In this
region, one can resort to perturbation theory.

2. At large distances, the interaction grows stronger and stronger, lead-
ing to permanent confinement of quarks within colour-neutral com-
posite particles (hadrons) consisting of either three quarks (baryons
and hyperons) or either a quark-antiquark pair (mesons). This is
known as the infra-red slavery.

Quarks also carry electric charge and weak isospin and hence they
interact with other Fermions both by electromagnetic and weak interac-
tions.

The remaining six Fermions do not carry colour charge and are called
leptons. The three leptons, electron, muon and tau, are charged particles
and they can interact through both electro-magnetic and weak interac-
tions. The three neutrinos do not carry electric charge and hence they
can interact only through weak interactions. This makes the detection of
neutrinos an extremely difficult job.

Each member of a generation has greater mass than the corresponding
particles of lower generations. The first generation charged particles do
not decay. The second and third generation charged particles decay with
very short half lives and are observed only in very high energy experi-
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ments. Neutrinos of all generations do not decay but pervade the entire
universe without much interaction with baryonic matter.

14.2.2 Force mediating particles - Bosons

The standard model explains the interaction between particles to arise
from an exchange of Bosons which are the force-mediating particles.

1. Photons mediate the electromagnetic interactions between charged
particles. The photon is massless and the electromagnetic interac-
tion is well-described by the theory of quantum electrodynamics.

2. The intermediate vector bosons W+,W−, Z0 mediate the weak in-
teraction between leptons and quarks of different flavours. They are
massive, Z0 being more massive than W±. The weak interaction
involving W± act exclusively on left-handed particles and right-
handed antiparticles. Further, W± carry an electric charge of ±1
and they couple to the electromagnetic interaction. The electrically
neutral Z boson interacts with both left-handed particles and anti-
particles. These three gauge bosons along with photon are clubbed
together and they collectively mediate the electro-weak interactions.

3. The strong interaction between coloured quarks are mediated by
eight gluons. The gluons are massless but they carry a colour which
is labeled by a combination of colour and anti-colour charge (e.g.
red-antigreen). Since the gluons have an effective colour charge, they
can interact among themselves. The gluons and their interactions
with themselves and with quarks are described by the theory of
quantum chromodynamics.

14.2.3 The Higgs Boson

The Higgs particle is a massive scalar particle predicted by the Standard
Model. It has no intrinsic spin and hence it is a Boson. The Higgs Boson
plays a unique role in explaining how the elementary particles other than
the photon and gluons acquire masses. It explains why the photon has no
mass while the W and Z Bosons are very heavy. In electro-weak theory,
the Higgs Boson generates the masses of leptons (electron, muon and tau
particle) and quarks. It is the only fundamental particle predicted by
the Standard Model and hence its discovery will validate the theoretical
framework underlying the Standard Model. So, a massive effort was ini-
tiated by CERN in building up the Large Hadron Collder and sustained
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the experimental activity, which finally succeeded in detecting this elusive
particle in 2013.

14.2.4 Theoretical framework

The quantum field theory provides the theoretical framework for the Stan-
dard Model. Each particle is described in terms of a dynamical field that
pervades the entire space-time. We first postulate a set of symmetries
for the system and then write down the most general renormalizable La-
grangian for the system that observes these symmetries.

The global Poincaré symmetry is postulated for all relativistic quan-
tum field theories. This symmetry includes the familiar translational sym-
metry, rotational symmetry and invariance under Lorentz transformation.
The local SU(3)×SU(2)×U(1) gauge symmetry is an internal symmetry
that essentially defines the standard model. The fields fall into different
representations of the various symmetry groups of the Standard Model.
The most general Lagrangian that displays the dynamics of the system
involves 19 parameters whose numerical values are established by experi-
ments.

Besides the symmetries postulated in the construction, the Standard
Model exhibits four additional global symmetries, which are collectively
denoted as accidental symmetries. These are continuous U(1) global sym-
metries which leave the Lagrangian invariant.

By Noether’s theorem, each symmetry has an associated conservation
law: the conservation of baryon number, electron number, muon number
and tauon number. Each quark is assigned a baryon number 1/3 while
each antiquark is assigned a baryon number −1/3. Conservation of baryon
number implies that the number of quarks minus the number of antiquarks
is a constant. This is strongly supported by experiments and no violation
has been observed for this conservation law.

Similarly, each electron and its associated neutrino is assigned an elec-
tron number +1 whereas each of its antiparticle is assigned an electron
number −1. In the same way, µ− and νµ are assigned a muon number +1
whereas µ+ and ν̄µ are assigned a muon number −1; τ− and ντ are as-
signed a tauon number +1 whereas τ+ and ν̄τ are assigned a tuaon number
−1. The standard model predicts that each of these lepton family num-
bers should be conserved separately in a way similar to the conservation
of baryon number.

The standard model predicts that neutrinos are massless. But exper-
iments indicate that neutrinos may have small masses, since neutrinos
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are found to oscillate between flavours, signaling that the conservation of
lepton family number is likely to be violated.

In addition to the accidental symmetries described above, the standard
model exhibits several approximate symmetries.

14.2.5 Successes and failures of the Standard Model

The Standard Model predicted the existence of W and Z bosons, gluons,
and the charm and top quarks before they were observed. Their predicted
properties were experimentally confirmed with great precision as shown in
Table. 14.2. The Standard Model also made several predictions about the
decay of Z bosons, which were confirmed by the Large Electron-Positron
Collider experiments at CERN.

Table 14.2: Predictions of the masses of W and Z bosons by the Standard
Model (SM) and their experimentally measured values.

Quantity SM prediction (GeV) Experiment (GeV)

Mass of W Boson 80.390 ± 0.018 80.398 ± 0.025

Mass of Z Boson 91.1874 ± 0.0021 91.1876 ± 0.0021

There is some experimental evidence for the oscillations of neutrino
from one flavour to the other. This will be possible only if the neutrinos
possess some mass as against the zero mass prediction by the standard
model. If the neutrinos have small masses, then there will be some viola-
tion of the lepton number flavour conservation.

One of the predictions of the Standard Model is the Higgs Boson which
has been experimentally observed in CERN. The Standard Model involves
19 numerical constants whose values are unrelated and arbitrary. and it
does not allow finite, although small, masses for neutrinos.

Gravitation is out of the purview of the Standard Model and there is
no way of including the general relativity. So, the Standard Model does
not explain the initial conditions of the universe that give rise to certain
observed properties of the present-day universe, properties such as the
predominance of matter over antimatter (matter/antimatter asymmetry),
and its isotropy and homogeneity over large distances.
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14.3 Gravitational Interaction

We have seen that the Standard Model explains fairly well the world of
elementary particles, on the basis of electromagnetic, weak and strong in-
teractions. The only other force left out is gravitational interaction. That
means the gravitational interaction is so weak compared to electromag-
netic, weak and strong interactions at the present day energies that the
accelerators can reach. To get a feeling of the relative strength, consider
the ratio of gravitational force to the electromagnetic force that operates
between two protons:

Fgravity

Fe.m.
=
GM2

p /r
2

e2/r2
≈ 10−36 << 1, (14.1)

where G is the gravitational constant and Mp is the rest mass of the
proton. At high energies, one has to replace the rest mass of the proton
by the effective relativistic mass

Meff =
Mp

(1− v2

c2
)1/2

. (14.2)

At high energies, when Meff = 1018Mp, the gravitational force is compa-
rable to electromagnetic force and hence cannot be ignored. At such high
energies, the Standard Model should fail.

From the general theory of relativity, it is conjectured that the gravi-
tational field arises from an exchange of gravitons which are massless but
have spin 2. This has motivated physicists to look for a more fundamental
theory which will unify all the four forces that operate between the ele-
mentary particles at high energies that will reduce to the Standard Model
at low energies.

Einstein’s general theory of relativity relates the gravitational forces
to the curved nature of space-time. This interlinking of gravity with
space-time offers insurmountable difficulties in finding a quantum theory
of gravity that will unify all the four fundamental forces. Such a quantum
theory should describe our universe, the physics of black holes and the
processes involving elementary particles. String theory appears to be a
promising candidate for such a unified theory.

14.4 Birth of String Theory

In the late 1960s, a totally novel idea emerged that particles should be
treated as string-like objects instead of point-like objects under the name
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“dual models”. This was to explain the experimentally observed be-
haviour of strongly interacting particles, called hadrons, at large angular
momentum J . The experimental data on resonances (excited states of
the light hadrons) of mass M and spin J fitted well with the relation
M2 = Jα′, where α′ is called the Regge slope. These strings have in-
finitesimal thickness and tension T = 1/(2πα′) and can be either open or
closed. The particles can be identified as the various vibrational modes
of an open string or closed string2. Since the vibrational modes predicted
massless particles of spin 2 and higher spins which are not seen in the
hadronic world, the theory was discorded.

In 1974, Scherk and Schwarz3 made an important observation that the
spin-2 massless particle in the spectrum of vibrational modes of the string
should be identified as the graviton. It has been known to the theoretical
physicists for a long time that if a good quantum theory of gravity is to be
developed then the particle that would carry the gravitational force would
have zero mass and two units of spin. Thus the theory of “dual models”
was revived under the name “string theory” in the hope of formulating a
quantum theory of gravity consistent with the laws of quantum mechanics.

14.4.1 Energy and Length Scales

Hitherto, there is no direct experimental observation that supports the
string-like nature of the elementary particles. It is because the present-
day accelerators have not reached the energy scale at which the string-like
nature can be detected. For the applicability of String Theory, we need
to discuss the Planckian units to determine the energy scale.

In Relativistic Quantum Mechanics and Quantum Field Theory, we
use natural units with c = 1 and ~ = 1. In String Theory, one has to
use Planckian units with Newton’s Gravitational constant G = 1 besides
~ = 1 and c = 1. This yields Planck length lpl, Planck mass mpl and

2Consider a guitar string that has been tuned by stretching the string under tension.
Depending on how the string is plucked and how much tension is in the string, different
musical notes will be created by the string. These musical notes could be said to be
excitation modes of that guitar string under tension.

In a similar manner, in string theory, the elementary particles we observe could be
thought of as the “musical notes” or excitation modes of elementary strings.

3J. Scherk and J. H. Schwarz, Nucl. Phys. B81, 118 (1974).
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Planck time tpl in terms of G, ~ and c.

lpl =

√
G~
c3

= 1.61× 10−33 cm,

mpl =

√
~c
G

= 2.17× 10−5 gm, (14.3)

tpl =
lpl

c
= 5.4× 10−44 sec.

Using Einstein’s mass-energy relation E = mc2, the Planck mass mpl =
1019 GeV, in energy units. Our present day accelerators have reached the
energy only upto 10 TeV = 104 GeV = 1013 eV and the Planck energy
is far above. This means that to detect the string-like nature, we need
the length scale of 10−33 cm or the energy scale of 1019 GeV for the
accelerators.

It is expected that if the String Theory is a more fundamental unified
theory, constructed at 1019 GeV, then it must reduce to the Standard
Model at 100 GeV.

14.4.2 Basic theory of strings

The basic concepts used in particle physics are extended to the theory
of strings4. The trajectory of a particle in classical mechanics becomes
a world line in relativistic mechanics. Characterizing the world line by
a parameter τ , the coordinates of the points on the world line can be
represented by xµ(τ) = x(τ), t(τ). In Fig. 14.1, we plot a world line on a
2+1 dimensional space-time.

For more than two dimensional space, it is not possible to draw the
world line on the plane of a paper but it can be visualized. Given the two
space-time points A and B, one can draw very many trajectories connect-
ing the points A and B, but the chosen path is the one which extremises
the interval between A and B with the constraint that δ(xµ) = 0 at the
end points A and B. This will yield a set of second order differential
equations for xµ(τ), the solution of which describes the classical path.

14.4.3 Open strings

If we replace the point-like particles by open strings of length l, the trajec-
tories of the string will sweep out a two-dimensional surface called world

4A. Ramadevi, A Pedagogical Introduction to String Theory, Physics News, 40, 19
(2010)
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Figure 14.1: World line of a particle parametrized by τ

sheet that describes the time evolution of the string. The world sheet can
be parametrized by two parameters σ, τ , where 0 ≤ σ ≥ l represents the
points on the string of length l. The world sheet can be described by
the coordinates xµ(σ, τ), where the superscript µ = 0, 1, 2, · · · d denotes
the components of d + 1 dimensional space-time coordinate system. In
particle physics, we have always assumed 3 + 1 dimensional space-time
but in string theory, the space-time dimensions are determined by the
stringent conditions imposed by quantum mechanics and relativity. Such
a d+1 dimensional space-time is called the target space in which the string
generates a world sheet.

The open string has two end points σ = 0 and σ = l, called the
boundary points. To find the classical trajectory of particles, we have
extremised the interval between the space-time points A and B. In the
case of strings, we need to extremise the area of the world sheet surface
to get a set of second order differential equations for xµ(σ, τ). In particle
theory, we have used the boundary conditions δ(xµ) = 0 at A and B. In
the case of open strings, we use either the Neumann boundary conditions
at the boundary points

∂

∂σ
xµ(σ, τ)|σ=0 =

∂

∂σ
xµ(σ, τ)|σ=l = 0 (14.4)

at some directions µ = 0, 1, 2, · · · , p where p ≤ d and Dirichlet boundary
conditions

xm(σ = 0, τ) = bm, xm(σ = l, τ) = cm, (14.5)
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(where bm and cm are constants) for the remaining directions m = p +
1, · · · , d). There can also be mixed boundary conditions where some direc-
tions have Neumann boundary conditions at σ = 0 and Dirichlet boundary
conditions at σ = l.

Initially, the Dirichlet boundary conditions were considered as unphys-
ical since they were not consistent with the laws of the special theory of
relativity in d+ 1 dimensions and hence strings with only the Newmann
boundary conditions were studied. Later, it was pointed out that Na-
ture requires that the laws of special theory of relativity need be satisfied
only in 3+1 dimensional space and hence Dirichlet boundary conditions
are allowed in other directions. It is found that the Dirichlet boundary
conditions lead to non-perturbative spectrum of string theory.

Only the perturbative spectrum involves fundamental strings where
the boundary conditions are only Neumann conditions. Extremising the
surface area of the world sheet of the open string subjected to the bound-
ary conditions, we obtain the classical solution xµ(σ, τ), which can be
expanded into Fourier modes aµn that resembles the linear superposition
of standing waves. Considering xµ(σ, τ) as an operator, quantization re-
sults in commutation relations between the Fourier modes aµn. The modes
with positive n resemble harmonic oscillator annihilation operators and
those with negative n resemble creation operators aµ−n = (aµn)†.

The non-negative norm imposed by quantum mechanics on the string
states and the requirement to satisfy the symmetries of the special theory
of relativity results in the 25+1 dimensions for space-time. Thus the
space-time dimension emerges from the string theory instead of being
assumed as 3+1 in quantum field theory.

The first excited string state in 25+1 dimensional space-time is identi-
fied as the massless photon. The vacuum state has negative mass-squared
which is usually referred to as tachyons.

14.4.4 Closed strings

Unlike open strings, closed strings have no boundary points. The point
σ on the closed string coincides with the point σ+ l since the ends of the
string of length l are joined to form a closed loop.

xµ(σ, τ) = xµ(σ + l, τ). (14.6)

Again, the classical solution is found by extremising the area of the closed
string world sheet subject to the above condition.
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It is found that the first excited massless state can be identified as the
graviton which is the quantum responsible for gravitational force. Thus
the closed string theory incorporates the quantum of gravity. The ground
state in closed string theory is again a negative mass-squared state which
represents closed string tachyons.

For the study of interactions and scattering, perturbative string theory
is developed in a way analogous to perturbation expansion in particle
theory using Feynman graphs. In perturbative string theory, Feynman-
like diagrams that are used are called fat graphs.

14.5 Superstring Theories

The string theory that is developed in 25+1 dimensional space is called
Bosonic String Theory since all the vibrational modes of the string corre-
spond to integer spins. Generally Bosons represent particles that transmit
forces and the Fermions are particles that make up the matter. If you im-
pose supersymmetry, then for every Bosonic state, there is a corresponding
Fermion and the string theory so obtained is called Superstring Theory.
There are five kinds of superstring theories, as shown in the table below.

The most important point in formulating a string theory is that it
should obey quantum mechanics in a sensible way. For bosonic strings,
this is satisfied only if the space-time dimensions number 26. For su-
perstrings we can whittle it down to 10. How we get down to the four
space-time dimensions, that we live in, is a different story.

If we ask how to get from ten space-time dimensions to four space-
time dimensions, there are many possible ways by which the superfluous
six dimensions are made very much smaller than the other four in string
theory. This process of compactification of unwanted space-time dimen-
sions yields interesting physics on its own.

But the number of string theories has also been shrinking in recent
years, because string theorists are discovering that what they thought
were completely different theories were in fact different ways of looking
at the same theory!

This period in string history has been given the name the second string
revolution. And now the biggest question is how to collapse the table
above into one theory, which some people want to call the M theory, for
it is the Mother of all theories.

At one time, string theorists believed there were five distinct super-
string theories: type I, types IIA and IIB, and the two heterotic string
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Table 14.3: Table of String Theories

Type
Space-time
Dimensions

Details

Bosonic 26

Only bosons, no fermions means only forces,
no matter, with both open and closed strings.
Major flaw: a particle with imaginary mass,
called the tachyon

I 10
Supersymmetry between forces and matter,
with both open and closed strings, no tachyon,
group symmetry is SO(32)

IIA 10
Supersymmetry between forces and matter,
with closed strings only, no tachyon,
massless fermions spin both ways (nonchiral)

IIB 10
Supersymmetry between forces and matter,
with closed strings only, no tachyon,
massless fermions only spin one way (chiral)

HO 10

Supersymmetry between forces and matter,
with closed strings only, no tachyon, heterotic,
meaning right moving and left moving strings
differ, group symmetry is SO(32)

HE 10

Supersymmetry between forces and matter,
with closed strings only, no tachyon, heterotic,
meaning right moving and left moving strings
differ, group symmetry is E8 × E8

theories.

But now it is known that this naive picture was wrong, and that the
five superstring theories are connected to one another as if they are each
a special case of a more fundamental M theory. These theories are related
by transformations that are called dualities. If two theories are related by
a duality transformation, it means that the first theory can be transformed
in some way so that it ends up looking just like the second theory. The
two theories are then said to be dual to one another under that kind of
transformation.

These dualities link quantities that were also thought to be separate.
Large and small distance scales, strong and weak coupling strengths –
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these quantities have always marked very distinct limits of behavior of
a physical system, in both classical field theory and quantum particle
physics. But strings can obscure the difference between large and small,
strong and weak, and this is how these five very different theories end up
being related.

Large and small distance

The duality symmetry that obscures our ability to distinguish between
large and small distance scales is called T-duality, and comes about from
the compactification of extra space dimensions in a ten dimensional su-
perstring theory.

Suppose we are in ten space-time dimensions, which means we have
nine space and one time. Take one of those nine space dimensions and
make it a circle of radius R, so that traveling in that direction for a
distance L = 2πR takes you around the circle and brings you back to
where you started.

A particle traveling around this circle will have a quantized momen-
tum around the circle, and this will contribute to the total energy of the
particle. But a string is very different, because in addition to traveling
around the circle, the string can wrap around the circle. The number of
times the string winds around the circle is called the winding number,
and that is also quantized.

Now the weird thing about string theory is that these momentum
modes and the winding modes can be interchanged, as long as we also
interchange the radius R of the circle with the quantity 2Lst/R, where Lst

is the string length. If R is very much smaller than the string length, then
the quantity 2Lst/R is going to be very large. So exchanging momentum
and winding modes of the string exchanges a large distance scale with a
small distance scale.

This type of duality is called T-duality. T-duality relates Type IIA
superstring theory to Type IIB superstring theory. That means if we take
Type IIA and Type IIB theory and compactify them both on a circle, then
switching the momentum and winding modes, and switching the distance
scale, changes one theory into the other! The same is also true for the
two heterotic theories.

So T-duality obscures the difference between large and small distances.
What looks like a very large distance to a momentum mode of a string
looks like a very small distance to a winding mode of a string.
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Strong and weak coupling

What is a coupling constant? This is some number that tells us how
strong an interaction is. A larger coupling constant means a stronger
force, and a smaller coupling constant means a weaker force.

For QED, the coupling constant is proportional to the square of the
electric charge and the perturbation theory is usually employed to solve
any problem. But if the coupling constant is larger, this method of cal-
culation breaks down.

This also can happen in string theory. String theories have a coupling
constant. But unlike in particle theories, the string coupling constant
is not just a number, but depends on one of the oscillation modes of
the string, called the dilaton. Exchanging the dilaton field with minus
itself exchanges a very large coupling constant with a very small one.
This symmetry is called S-duality. If two string theories are related by
S-duality, then one theory with a strong coupling constant is the same
as the other theory with weak coupling constant. Since the theory with
strong coupling cannot be understood by means of expanding in a series,
but the theory with weak coupling can. So if the two theories are related
by S-duality, then we just need to understand the weak theory, and that
is equivalent to understanding the strong theory.

Superstring theories related by S-duality are: Type I superstring the-
ory with heterotic SO(32) superstring theory, and Type IIB theory with
itself.

Starting from any dimension greater than four, it is necessary to con-
sider how these are reduced to four dimensional space-time.

Two different ways have been proposed to resolve this apparent con-
tradiction. The first is to compactify the extra dimensions; i.e., the 6
or 7 extra dimensions are so small as to be undetectable by present day
experiments. A standard analogy for this is to consider multidimensional
space as a garden hose. If the hose is viewed from a sufficient distance,
it appears to have only one dimension, its length. Indeed, think of a
ball just small enough to enter the hose. Throwing such a ball inside the
hose, the ball would move more or less in one dimension; in any exper-
iment we make by throwing such balls in the hose, the only important
movement will be one-dimensional, that is, along the hose. However, as
one approaches the hose, one discovers that it contains a second dimen-
sion, its circumference. Thus, an ant crawling inside it would move in
two dimensions (and a fly flying in it would move in three dimensions).
This ”extra dimension” is only visible within a relatively close range to
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the hose, or if one ”throws in” small enough objects. Similarly, the extra
compact dimensions are only ”visible” at extremely small distances, or
by experimenting with particles with extremely small wavelengths (of the
order of the compact dimension’s radius), which in quantum mechanics
means very high energies (see wave-particle duality).

T-duality relates the large and small distance scales between string
theories, whereas S-duality relates strong and weak coupling strengths
between string theories. U-duality links T-duality and S-duality. One
such theory is the 11-dimensional M-theory, which requires space-time to
have eleven dimensions, as opposed to the usual three spatial dimensions
and the fourth dimension of time. The original string theories from the
1980s describe special cases of M-theory where the eleventh dimension is
a very small circle or a line, and if these formulations are considered as
fundamental, then string theory requires ten dimensions. But the theory
also describes universes like ours, with four observable space-time dimen-
sions, as well as universes with up to 10 flat space dimensions, and also
cases where the position in some of the dimensions is not described by a
real number, but by a completely different type of mathematical quantity.
So the notion of space-time dimension is not fixed in string theory: it is
best thought of as different in different circumstances.
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List of Symbols and Notation

σx, σy, σz Pauli spin matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
,

σz =

[
1 0
0 −1

]
.

β, αx, αy, αz Dirac matrices

β =

[
I 0
0 −I

]
, α · p =

[
0 σ
σ 0

]
.

γ0, γx, γy, γz Gamma matrices
γ0 = β, γx = βαx, γy = βαy, γz = βαz.

γ0 =

[
I 0
0 −I

]
, γ =

[
0 σ

−σ 0

]
.

γ5, γ
′
5 γ5 = γ0γxγyγz, γ′5 = iγ5

γ5 = −i
[

0 I
I 0

]
, γ′5 =

[
0 I
I 0

]
.

Scalar product of p · x = pxx+ pyy + pzz;
three-vectors A ·B = AxBx +AyBy +AzBz.

Scalar product of p · x = Et− p · x; A ·B = A0B0 −A ·B.
four-vectors The upright bold letters denote four-vectors and

the bold italics denote three-vectors.

Contravariant xµ, µ = 0, 1, 2, 3.
four-vector x0 = ct, x1 = x, x2 = y, x3 = z.

Covariant xµ, µ = 0, 1, 2, 3.
four-vector x0 = ct, x1 = −x, x2 = −y, x3 = −z.

348
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p/ γµpµ = γ0p0 − γ · p = γ0p0 − γxpx − γypy − γzpz.

gµν Components of metric tensor
= gµν , diag(1,−1,−1,−1)

2 D’Alembertian operator

2 = ∂
∂xµ

∂
∂xµ = 1

c2
∂2

∂t2
−∇2.

∂µ
∂
∂xµ .

∂µ ∂
∂xµ

.

Fµν Electromagnetic field tensor

Fµν = ∂νAµ − ∂µAν = ∂Aµ

∂xν
− ∂Aν

∂xµ
= −F νµ.

[A,B]− [A,B]− = AB −BA. (Commutator bracket)

{A,B}+ {A,B}+ = AB+BA. (Anticommutator bracket)

L Lagrangian density.

L Total Lagrangian L =
∫
d3xL .

A Action A =
∫
dtL.

H Hamiltonian density.

H Total Hamiltonian H =
∫
d3xH .

Consider two events at space-time points (x, y, z, t) and (x + dx, y +
dy, z + dz, t + dt). Then the interval ds between these two space-time
points is defined by

ds2 = c2dt2 − (dx2 + dy2 + dz2). (A.1)

The square of the interval ds2 is the same for all observers in different
inertial frames of reference and so is invariant under Lorentz transforma-
tion. With this definition, we say that the space-time interval is time-like
if

ds2 > 0,

and space-like if
ds2 < 0,

and light-like if
ds2 = 0.
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The invariant space-time interval ds is obtained by defining two types of
four-vectors, one contravariant four-vector xµ with an upper index µ and
the other called covariant four-vector xµ with a lower index µ and taking
a scalar product (inner product) of them.

Contravariant four-vector

xµ = x0, x1, x2, x3 = ct, x, y, z. (A.2)

Covariant four-vector

xµ = x0, x1, x2, x3 = ct,−x,−y,−z. (A.3)

Scalar product

ds2 =

3∑
µ=0

dxµdxµ = c2dt2 − dx2 − dy2 − dz2. (A.4)

The relation between the contravariant and covariant vectors can be ex-
pressed by defining a metric tensor gµν

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.5)

Then

xµ =
∑
ν

gµνx
ν = gµνx

ν

= gµ0x
0 + gµ1x

1 + gµ2x
2 + gµ3x

3. (A.6)

The repeated index ν implies summation over ν and if this convention is
used, then the summation sign is redundant. The relation (A.6) yields

x0 = x0, x1 = −x1, x2 = −x2, x3 = −x3. (A.7)

Since the geometry of the space-time depends on the distribution of mat-
ter, leading to the concept of curved space-time, the metric tensor gij is
a function of the space-time coordinates.
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The contravariant metric tensor gµν is given by

gµν = gµν .

A contravariant four-vector Aµ transforms from one coordinate system
(unprimed) xµ to another coordinate system (primed) x′µ according to
the formula

A′µ =
∂x′µ

∂xν
Aν ; Aν =

∂xν

∂x′µ
A′µ. (A.8)

A covariant four-vector Aµ transforms from the unprimed coordinate
system xµ to the primed coordinate system x′µ according to the law

A′µ =
∂xν

∂x′µ
Aν ; Aν =

∂x′µ

∂xν
A′µ. (A.9)

If (A0, A1, A2, A3) are the contravariant components of a four-vector
A, then its covariant components Aµ are given by

Aµ = gµνA
ν , (µ = 0, 1, 2, 3) (A.10)

A0 = A0; A1 = −A1; A2 = −A2; A3 = −A3. (A.11)

Thus, we can write the contravariant and covariant components of a four-
vector as

Aµ = (A0,A); Aµ = (A0,−A).

The scalar product (inner product) of the two four-vectors A and B is

A ·B = AµBµ = A0B0 +A1B1 +A2B2 +A3B3

= A0B0 −AxBx −AyBy −AzBz
= A0B0 −A ·B. (A.12)

We adopt the convention of representing four-vectors by upright bold
letters and three-component vectors by italic bold letters.

The differential operators in the four-dimensional space-time xµ trans-
forms as the components of a covariant four-vector.

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
. (A.13)

Thus the differential operator is a covariant four-vector.

∂µ =
∂

∂xµ
=

(
∂

∂x0
,∇
)
. (A.14)
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The corresponding contravariant four-vector is

∂ν = gµν∂ν =
∂

∂xν
=

(
∂

∂x0
,−∇

)
. (A.15)

From the foregoing discussion, it is clear that gµν contains all the
information about the geometry of the space - in this case, Minkowski
space-time. If we confine ourselves to the special theory of relativity,
the metric tensor gµν plays a passive role but it plays an active role in
general relativity since the space-time geometry is not fixed in advance
and can be curved depending on the distribution of matter. So, in special
relativity, one can avoid the subtle distinction between the contravariant
and covariant vectors and define the scalar product of four-vectors

A ·B = A0B0 −A ·B = A0B0 −AxBx −AyBy −AzBz. (A.16)

p/ = γµpµ = γ0p0 − γ · p = γ0p0 − γxpx − γypy − γzpz. (A.17)

By the above definition, we can avoid altogether the concept of contravari-
ant and covariant vectors as was done by Feynman in his book on Quan-
tum Electrodynamics (1962). We have followed this convention in chap-
ters 1-7 and only in chapters 8-14, we have introduced the notation of
contravariant and covariant vectors.



Appendix B

The Density of Final States

1. One-particle final state

Volume of phase space = V d3p = V p2dpdΩ.
The number of states dn available for a particle with momentum lying
between p and p + dp is obtained by dividing the volume of phase space
by the volume of the unit cell h3.

dn =
V p2dpdΩ

h3
=
V p2dpdΩ

(2π~)3
.

Let us assume the quantization volume to be unity i.e. V = 1 and use
natural units i.e. ~ = 1, c = 1. The density of states ρ is defined as the
number of states available per unit energy interval for a particle scattered
within a solid angle dΩ.

ρ(E, p) =
dn

dE dΩ
=

p2

(2π)3

dp

dE
=

Ep

(2π)3
. (B.1)

The last step is obtained by using the relativistic relation between energy
and momentum E2 = p2 +m2 such that dE/dp = p/E.

2. Two-particle final state

Here we have two particles in the final state with total energy E and total
momentum P and the observation is made on the particle 1.

E = E1 + E2; P = p1 + p2. (B.2)

ρ(E; p1, p2) =
p2

1

(2π)3

dp1

dE
. (B.3)
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We need to evaluate dE/dp1.

dE

dp1
=
dE1

dp1
+
dE2

dp1
=
p1

E1
+
dE2

dp2

dp2

dp1
=
p1

E1
+
p2

E2

dp2

dp1
. (B.4)

To evaluate dp2/dp1, we proceed as follows:

p2 = P − p1; p2
2 = P 2 + p2

1 − 2P · p1; (B.5)

2p2
dp2

dp1
= 2p1 − 2

P · p1

p1

dp2

dp1
=
p1

p2
− P · p1

p1p2
=
p2

1 − P · p1

p1p2
. (B.6)

Substituting (B.6) into (B.4), we get

dE

dp1
=

p1

E1
+
p2

E2

p2
1 − P · p1

p1p2

=
p2

1E2 + (p2
1 − P · p1)E1

E1E2p1

=
p2

1(E − E1) + (p2
1 − P · p1)E1

E1E2p1

=
p2

1E − (P · p1)E1

E1E2p1
. (B.7)

Substituting (B.7) in (B.3), we obtain the two-particle density of states.

ρ(E; p1, p2) =
E1E2p

2
1

(2π)3{Ep2
1 − E1(P · p1)}

. (B.8)

Limiting case
If we allow the mass of the particle 2 to become infinite,

m2 → ∞, then E → ∞ such that
E

E2
→ 1;

E1

E2
→ 0.

In this limiting case, the two-particle density of states (B.8)

ρ(E; p1, p2) −→ E1p1

(2π)3
, (B.9)

reduces to the one-particle density of states (B.1).
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3. Three-particle final state

Here we have three particles in the final state with total energy E and
total momentum P such that

E = E1 + E2 + E3; P = p1 + p2 + p3.

The three-particle density of states is a product of one-particle density of
states and the other two-particle density of states.

ρ(E; p1, p2, p3) = ρ(E1, p1) ρ(E − E1; p2, p3)

=
E1p1

(2π)3

E2E3p
3
2

(2π)3{(E − E1)p2
2 − E2(P − p1) · p2}

=
1

(2π)6

E1E2E3p1p
3
2

(E − E1)p2
2 − E2(P − p1) · p2

. (B.10)

Limiting case
If m3 →∞, then E3 →∞. Consequently,

ρ(E; p1, p2, p3) =
1

(2π)6
E1E2p1p2, (B.11)

since E−E1
E3
→ 1 and E2

E3
→ 0. The three-particle density of states reduces

to a product of two one-particle density of states when one of the particles
has an infinite mass.

4. n–particle final state

The construction of three-particle density of states has given us a clue how
to construct n–particle density of states. If E is the total energy and P ,
the total momentum of the n–particle state, then the n–particle density
of states is the product of one-particle density of states with energy E1

and momentum p1 and the (n-1)–particle density of states with energy
E − E1 and momentum P − p1.

ρ(E; p1, p2, · · · , pn) = ρ(E1, p1) ρ(E − E1; p2, p3, · · · , pn). (B.12)

Thus, the n–particle density of states can be constructed by applying the
rule successively.

For additional reading and for a comprehensive account on density
of states, the reader is referred to: Alladi Ramakrishnan, Handbuch der
Physik, Vol. III, p.524, Springer-Verlag (1959); Alladi Ramakrishnan,
Elementary Particles and Cosmic Rays, p.503, Pergamon Press, Oxford
(1962); R.P. Feynman, Quantum Electrodynamics, p.81, W.A. Benjamin,
New York (1962).
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